In mathematics, Heine's basic hypergeometric series, or hypergeometric q-series, are q-analog generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational function of n. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base.
The basic hypergeometric series 2φ1(qα,qβ;qγ;q,x) was first considered by Eduard Heine (1846). It becomes the hypergeometric series F(α,β;γ;x) in the limit when the base q is 1.
Read more about Basic Hypergeometric Series: Definition, Simple Series, The q-binomial Theorem, Ramanujan's Identity, Watson's Contour Integral
Famous quotes containing the words basic and/or series:
“Insecurity, commonly regarded as a weakness in normal people, is the basic tool of the actors trade.”
—Miranda Richardson (b. 1958)
“Depression moods lead, almost invariably, to accidents. But, when they occur, our mood changes again, since the accident shows we can draw the world in our wake, and that we still retain some degree of power even when our spirits are low. A series of accidents creates a positively light-hearted state, out of consideration for this strange power.”
—Jean Baudrillard (b. 1929)