Statement
A choice function is a function f, defined on a collection X of nonempty sets, such that for every set s in X, f(s) is an element of s. With this concept, the axiom can be stated:
- For any set X of nonempty sets, there exists a choice function f defined on X.
Thus the negation of the axiom of choice states that there exists a set of nonempty sets which has no choice function.
Each choice function on a collection X of nonempty sets is an element of the Cartesian product of the sets in X. This is not the most general situation of a Cartesian product of a family of sets, where a same set can occur more than once as a factor; however, one can focus on elements of such a product that select the same element every time a given set appears as factor, and such elements correspond to an element of the Cartesian product of all distinct sets in the family. The axiom of choice asserts the existence of such elements; it is therefore equivalent to:
- Given any family of nonempty sets, their Cartesian product is a nonempty set.
Read more about this topic: Axiom Of Choice
Famous quotes containing the word statement:
“Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.”
—Ralph Waldo Emerson (18031882)
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.”
—Ralph Waldo Emerson (18031882)