Ascending Chain Condition - Definition

Definition

A partially ordered set (poset) P is said to satisfy the ascending chain condition (ACC) if every strictly ascending sequence of elements eventually terminates. Equivalently, given any sequence

there exists a positive integer n such that

Similarly, P is said to satisfy the descending chain condition (DCC) if every strictly descending sequence of elements eventually terminates, that is, there is no infinite descending chain. Equivalently every descending sequence

of elements of P, eventually stabilizes.

Read more about this topic:  Ascending Chain Condition

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)