Arithmetic Progression - Sum

Sum

This section is about Finite arithmetic series. For Infinite arithmetic series, see Infinite arithmetic series.

The sum of the members of a finite arithmetic progression is called an arithmetic series.

Expressing the arithmetic series in two different ways:

Adding both sides of the two equations, all terms involving d cancel:

Dividing both sides by 2 produces a common form of the equation:

An alternate form results from re-inserting the substitution: :

In 499 AD Aryabhata, a prominent mathematician-astronomer from the classical age of Indian mathematics and Indian astronomy, gave this method in the Aryabhatiya (section 2.18).

So, for example, the sum of the terms of the arithmetic progression given by an = 3 + (n-1)(5) up to the 50th term is

Read more about this topic:  Arithmetic Progression

Famous quotes containing the word sum:

    I would sum up my fear about the future in one word: boring. And that’s my one fear: that everything has happened; nothing exciting or new or interesting is ever going to happen again ... the future is just going to be a vast, conforming suburb of the soul.
    —J.G. (James Graham)

    To help, to continually help and share, that is the sum of all knowledge; that is the meaning of art.
    Eleonora Duse (1859–1924)

    They are but beggars that can count their worth,
    But my true love is grown to such excess
    I cannot sum up sum of half my wealth.
    William Shakespeare (1564–1616)