Argument Principle - Proof of The Argument Principle

Proof of The Argument Principle

Let zN be a zero of f. We can write f(z) = (zzN)kg(z) where k is the multiplicity of the zero, and thus g(zN) ≠ 0. We get

and

Since g(zN) ≠ 0, it follows that g' (z)/g(z) has no singularities at zN, and thus is analytic at zN, which implies that the residue of f′(z)/f(z) at zN is k.

Let zP be a pole of f. We can write f(z) = (zzP)−mh(z) where m is the order of the pole, and thus h(zP) ≠ 0. Then,

and

similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue of f′(z)/f(z) at zP is −m.

Putting these together, each zero zN of multiplicity k of f creates a simple pole for f′(z)/f(z) with the residue being k, and each pole zP of order m of f creates a simple pole for f′(z)/f(z) with the residue being −m. (Here, by a simple pole we mean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles, and so no other residues.

By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the k 's for each zero zN is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.

Read more about this topic:  Argument Principle

Famous quotes containing the words proof of, proof, argument and/or principle:

    A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutation—a proof of unwillingness to do much, even where there is a necessity of doing something.
    Samuel Johnson (1709–1784)

    a meek humble Man of modest sense,
    Who preaching peace does practice continence;
    Whose pious life’s a proof he does believe,
    Mysterious truths, which no Man can conceive.
    John Wilmot, 2d Earl Of Rochester (1647–1680)

    “English! they are barbarians; they don’t believe in the great God.” I told him, “Excuse me, Sir. We do believe in God, and in Jesus Christ too.” “Um,” says he, “and in the Pope?” “No.” “And why?” This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, “Because we are too far off.” A very new argument against the universal infallibility of the Pope.
    James Boswell (1740–1795)

    We rail at trade, but the historian of the world will see that it was the principle of liberty; that it settled America, and destroyed feudalism, and made peace and keeps peace; that it will abolish slavery.
    Ralph Waldo Emerson (1803–1882)