Argument Principle - Proof of The Argument Principle

Proof of The Argument Principle

Let zN be a zero of f. We can write f(z) = (zzN)kg(z) where k is the multiplicity of the zero, and thus g(zN) ≠ 0. We get

and

Since g(zN) ≠ 0, it follows that g' (z)/g(z) has no singularities at zN, and thus is analytic at zN, which implies that the residue of f′(z)/f(z) at zN is k.

Let zP be a pole of f. We can write f(z) = (zzP)−mh(z) where m is the order of the pole, and thus h(zP) ≠ 0. Then,

and

similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue of f′(z)/f(z) at zP is −m.

Putting these together, each zero zN of multiplicity k of f creates a simple pole for f′(z)/f(z) with the residue being k, and each pole zP of order m of f creates a simple pole for f′(z)/f(z) with the residue being −m. (Here, by a simple pole we mean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles, and so no other residues.

By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the k 's for each zero zN is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.

Read more about this topic:  Argument Principle

Famous quotes containing the words proof of the, proof of, proof, argument and/or principle:

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    When children feel good about themselves, it’s like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.
    Stephanie Martson (20th century)

    The chief contribution of Protestantism to human thought is its massive proof that God is a bore.
    —H.L. (Henry Lewis)

    As for Hitler, his professed religion unhesitatingly juxtaposed the God-Providence and Valhalla. Actually his god was an argument at a political meeting and a manner of reaching an impressive climax at the end of speeches.
    Albert Camus (1913–1960)

    Experimental work provides the strongest evidence for scientific realism. This is not because we test hypotheses about entities. It is because entities that in principle cannot be ‘observed’ are manipulated to produce a new phenomena
    [sic] and to investigate other aspects of nature.
    Ian Hacking (b. 1936)