Examples
Every xpq-metric space (X,d) can be distancized to (X,d), as described at the beginning of the definition.
Given a set X, the discrete distance is given by d(x,A) = 0 if x ∈ A and = ∞ if x ∉ A. The induced topology is the discrete topology.
Given a set X, the indiscrete distance is given by d(x,A) = 0 if A is non-empty, and = ∞ if A is empty. The induced topology is the indiscrete topology.
Given a topological space X, a topological distance is given by d(x,A) = 0 if x ∈ A, and = ∞ if not. The induced topology is the original topology. In fact, the only two-valued distances are the topological distances.
Let P=, the extended positive reals. Let d+(x,A) = max (x−sup A,0) for x∈P and A⊆P. Given any approach space (X,d), the maps (for each A⊆X) d(.,A) : (X,d) → (P,d+) are contractions.
On P, let e(x,A) = inf { |x−a| : a∈A } for x<∞, let e(∞,A) = 0 if A is unbounded, and let e(∞,A) = ∞ if A is bounded. Then (P,e) is an approach space. Topologically, P is the one-point compactification of [0,∞). Note that e extends the ordinary Euclidean distance. This cannot be done with the ordinary Euclidean metric.
Let βN be the Stone–Čech compactification of the integers. A point U∈βN is an ultrafilter on N. A subset A⊆βN induces a filter F(A)=∩{U:U∈A}. Let b(U,A) = sup { inf { |n-j| : n∈X, j∈E } : X∈U, E∈F(A) }. Then (βN,b) is an approach space that extends the ordinary Euclidean distance on N. In contrast, βN is not metrizable.
Read more about this topic: Approach Space
Famous quotes containing the word examples:
“It is hardly to be believed how spiritual reflections when mixed with a little physics can hold peoples attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.”
—G.C. (Georg Christoph)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.”
—Michel de Montaigne (15331592)