Approach Space - Examples

Examples

Every xpq-metric space (X,d) can be distancized to (X,d), as described at the beginning of the definition.

Given a set X, the discrete distance is given by d(x,A) = 0 if xA and = ∞ if xA. The induced topology is the discrete topology.

Given a set X, the indiscrete distance is given by d(x,A) = 0 if A is non-empty, and = ∞ if A is empty. The induced topology is the indiscrete topology.

Given a topological space X, a topological distance is given by d(x,A) = 0 if xA, and = ∞ if not. The induced topology is the original topology. In fact, the only two-valued distances are the topological distances.

Let P=, the extended positive reals. Let d+(x,A) = max (x−sup A,0) for xP and AP. Given any approach space (X,d), the maps (for each AX) d(.,A) : (X,d) → (P,d+) are contractions.

On P, let e(x,A) = inf { |xa| : aA } for x<∞, let e(∞,A) = 0 if A is unbounded, and let e(∞,A) = ∞ if A is bounded. Then (P,e) is an approach space. Topologically, P is the one-point compactification of [0,∞). Note that e extends the ordinary Euclidean distance. This cannot be done with the ordinary Euclidean metric.

Let βN be the Stone–Čech compactification of the integers. A point U∈βN is an ultrafilter on N. A subset A⊆βN induces a filter F(A)=∩{U:UA}. Let b(U,A) = sup { inf { |n-j| : nX, jE } : XU, EF(A) }. Then (βN,b) is an approach space that extends the ordinary Euclidean distance on N. In contrast, βN is not metrizable.

Read more about this topic:  Approach Space

Famous quotes containing the word examples:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring ‘em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.
    Bernard Mandeville (1670–1733)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)