Appell Series

In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Paul Appell (1880) and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable.

Read more about Appell Series:  Definitions, Recurrence Relations, Derivatives and Differential Equations, Integral Representations, Special Cases, Related Series

Famous quotes containing the word series:

    Life ... is not simply a series of exciting new ventures. The future is not always a whole new ball game. There tends to be unfinished business. One trails all sorts of things around with one, things that simply won’t be got rid of.
    Anita Brookner (b. 1928)