Antenna Aperture - Aperture Efficiency

Aperture Efficiency

In general, the aperture of an antenna is not directly related to its physical size. However some types of antennas, for example parabolic dishes and horns, have a physical aperture (opening) which collects the radio waves. In these aperture antennas, the effective aperture Aeff must always be less than the area of the antenna's physical aperture Aphys, as can be seen from the definition above. An antenna's aperture efficiency, ea is defined as the ratio of these two areas:

The aperture efficiency is a dimensionless parameter between 0 and 1.0 that measures how far the antenna falls short of using all the radio power entering its physical aperture. If the antenna were perfectly efficient, all the radio power falling within its physical aperture would be converted to electrical power delivered to the load attached to its output terminals, so these two areas would be equal Aeff = Aphys and the aperture efficiency would be 1.0. But all antennas have losses, such as power dissipated as heat in the resistance of its elements, nonuniform illumination by its feed, and radio waves scattered by structural supports and diffraction at the aperture edge, which reduce the power output. Aperture efficiencies of typical antennas vary from 0.35 to 0.70 but can range up to 0.90.

Read more about this topic:  Antenna Aperture

Famous quotes containing the words aperture and/or efficiency:

    Animals used to provide a lowlife way to kill and get away with it, as they do still, but, more intriguingly, for some people they are an aperture through which wounds drain. The scapegoat of olden times, driven off for the bystanders’ sins, has become a tender thing, a running injury. There, running away ... is me: hurt it and you are hurting me.
    Edward Hoagland (b. 1932)

    Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, nature’s laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through nature’s universal laws and rules.
    Baruch (Benedict)