The Conclusion
It can be shown that there is, up to sign, a unique choice of transverse vector field ξ for which the two conditions that ∇ω ≡ 0 and ω ≡ ν are both satisfied. These two special transverse vector fields are called affine normal vector fields, or sometimes called Blaschke normal fields. From its dependence on volume forms for its definition we see that the affine normal vector field is invariant under volume preserving affine transformations. These transformations are given by SL(n+1,R) ⋉ Rn+1, where SL(n+1,R) denotes the special linear group of (n+1) × (n+1) matrices with real entries and determinant 1, and ⋉ denotes the semi-direct product. SL(n+1,R) ⋉ Rn+1 forms a Lie group.
Read more about this topic: Affine Differential Geometry
Famous quotes containing the word conclusion:
“The conclusion has never changed: the worst sort of people come here for the worst sort of reasons and put upon those of us who have conveniently forgotten where we came from and how we got here.”
—Anna Quindlen (b. 1952)
“The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.”
—C.G. (Carl Gustav)