Yagi-Uda Antenna

Yagi-Uda Antenna

A Yagi-Uda array, commonly known simply as a Yagi antenna, is a directional antenna consisting of a driven element (typically a dipole or folded dipole) and additional parasitic elements (usually a so-called directors and one or more reflector). The name stems from its inventors, as the Yagi-Uda array was invented in 1926 by Shintaro Uda of Tohoku Imperial University, Japan, with a lesser role played by his colleague Hidetsugu Yagi. However the "Yagi" name has become more familiar with the name of Uda often omitted. The reflector element is slightly longer (typically 5% longer) than the driven dipole, whereas the so-called directors are a little shorter. This design achieves a very substantial increase in the antenna's directionality and gain compared to a simple dipole.

Highly directional antennas such as the Yagi-Uda are commonly referred to as "beam antennas" due to their high gain. However the Yagi-Uda design only achieves this high gain over a rather narrow bandwidth, making it more useful for various communications bands (including amateur radio) but less suitable for traditional radio and television broadcast bands. Amateur radio operators ("hams") frequently employ these for communication on HF, VHF, and UHF bands, often constructing such antennas themselves ("homebrewing"), leading to a quantity of technical papers and software. Wideband antennas used for VHF/UHF broadcast bands include the lower-gain log-periodic dipole array, which is often confused with the Yagi-Uda array due to its superficially similar appearance. That design along with other phased arrays have electrical connections on each element, whereas the Yagi-Uda design operates on the basis of electromagnetic interaction between the "parasitic" elements and the one driven (dipole) element.

Read more about Yagi-Uda Antenna:  Description, Theory of Operation, Analysis, Design, History