Relation To Jacobi Elliptic Functions
For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of the Jacobi's elliptic functions. The basic relations are
where e1-3 are the three roots described above and where the modulus k of the Jacobi functions equals
and their argument w equals
Read more about this topic: Weierstrass's Elliptic Functions
Famous quotes containing the words relation to, relation, jacobi and/or functions:
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“During the long ages of class rule, which are just beginning to cease, only one form of sovereignty has been assigned to all menthat, namely, over all women. Upon these feeble and inferior companions all men were permitted to avenge the indignities they suffered from so many men to whom they were forced to submit.”
—Mary Putnam Jacobi (18421906)
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)