Relation To Jacobi Elliptic Functions
For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of the Jacobi's elliptic functions. The basic relations are
where e1-3 are the three roots described above and where the modulus k of the Jacobi functions equals
and their argument w equals
Read more about this topic: Weierstrass's Elliptic Functions
Famous quotes containing the words relation to, relation, jacobi and/or functions:
“The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to the serious. One can be serious about the frivolous, frivolous about the serious.”
—Susan Sontag (b. 1933)
“The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?”
—Ralph Waldo Emerson (18031882)
“... [the] special relation of women to children, in which the heart of the world has always felt there was something sacred, serves to impress upon women certain tendencies, to endow them with certain virtues ... which will render them of special value in public affairs.”
—Mary Putnam Jacobi (18421906)
“Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.”
—Friedrich Nietzsche (18441900)


