Weak Topology (polar Topology) - Definition

Definition

Given a dual pair the weak topology is the weakest polar topology on so that

.

That is the continuous dual of is equal to up to isomorphism.

The weak topology is constructed as follows:

For every in on we define a semi norm on

with

This family of semi norms defines a locally convex topology on .

Read more about this topic:  Weak Topology (polar Topology)

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)