Water Splitting - Thermal Decomposition of Water

Thermal Decomposition of Water

Thermal decomposition, also called thermolysis, is defined as a chemical reaction whereby a chemical substance breaks up into at least two chemical substances when heated. At elevated temperatures water molecules split into their atomic components hydrogen and oxygen. For example at 2200 °C about three percent of all H2O molecules are dissociated into various combinations of hydrogen and oxygen atoms, mostly H, H2, O, O2, and OH. Other reaction products like H2O2 or HO2 remain minor. At the very high temperature of 3000 °C more than half of the water molecules are decomposed, but at ambient temperatures only one molecule in 100 trillion dissociates by the effect of heat. However, catalysts can accelerate the dissociation of the water molecules at lower temperatures.

Thermal water splitting has been investigated for hydrogen production since the 1960s. The high temperatures needed to obtain substantial amounts of hydrogen impose severe requirements on the materials used in any thermal water splitting device. For industrial or commercial application, the material constraints have limited the success of applications for hydrogen production from direct thermal water splitting and with few exceptions most recent developments are in the area of the catalysis and thermochemical cycles.

Read more about this topic:  Water Splitting

Famous quotes containing the word water:

    “... You ought to have seen how it looked in the rain,
    The fruit mixed with water in layers of leaves,
    Like two kinds of jewels, a vision for thieves.”
    Robert Frost (1874–1963)