Voyager 1 - Current Status

Current Status

Voyager 1 is alive and responding to commands broadcast from Earth.

Voyager 1 is not heading towards any particular star, but in about 40,000 years it will pass within 1.6 light years of the star Gliese 445, which is at present in the constellation Camelopardalis. That star is generally moving towards our Solar System at about 119 km/s (430,000 km/h; 270,000 mph).

On February 17, 1998, Voyager 1 became the furthest man-made object from Earth, passing Pioneer 10 at 69 AU from the Sun. Since then, Voyager 1 has been the farthest manmade object from Earth, and no probe has passed its distance and there are no probes predicted to be launched in the next 20 years that will pass the probe.

On December 18, 2004, Voyager 1 passed the termination shock. This is the unofficial date of departure from the Solar System. While the spacecraft still remains under the Sun's influence, at the termination shock particles from the interstellar medium interact with solar particles, signaling that the hypothetical heliopause is not far from this point. Six years later in 2010 Voyager 1 entered an area of the heliosheath where the solar wind outward speed is 0, or flowing sideways relative to the Sun. This signals that Voyager 1 is getting very close to entering the interstellar medium.

On March 31, 2006, the amateur radio operators from AMSAT in Germany tracked and received radio waves from Voyager 1 using the 20-meter (66 ft) dish at Bochum with a long integration technique. Retrieved data was checked and verified against data from the Deep Space Network station at Madrid, Spain. This is believed to be the first such tracking of Voyager 1.

On December 13, 2010, it was confirmed that Voyager 1 passed the reach of the solar wind emanating from the Sun. It is suspected that solar wind at this distance turns sideways due to interstellar wind pushing against the heliosphere. Since June 2010, detection of solar wind has been consistently at zero, providing conclusive evidence of the event. The meridional (north-south) speed of the solar wind, which is suspected to have increased, cannot be inferred in Voyager 1's current configuration. On this date, the spacecraft was approximately 17.3 billion kilometers (116 AU or 10.8 billion miles) from the Sun.

On March 8, 2011, Voyager 1 was commanded to change its orientation to detect the current direction of the solar wind. A test roll done in February confirmed the spacecraft's ability to maneuver and reorient itself. The course of the spacecraft was not changed. It rotated 70 degrees counterclockwise with respect to Earth to detect the solar wind. This was the first time the spacecraft had done any major maneuvering since the family portrait photograph of the planets was taken in 1990. The spacecraft will be maneuvered again in the coming months to further analyze the solar wind. After the first roll the spacecraft had no problem in reorienting itself with Alpha Centauri, Voyager 1's guide star, and it resumed sending transmissions back to Earth. This is a major milestone in the Voyager interstellar program. Voyager 2 is still detecting outward flow of solar wind but it is estimated that in the coming months or years it will experience the same conditions as Voyager 1.

On May 21, 2011, the spacecraft was reported at 12.44° declination and 17.163 hours right ascension, and at an ecliptic latitude of 34.9° (the ecliptic latitude changes very slowly), placing it in the constellation Ophiuchus as observed from the Earth. NASA continued its daily tracking of Voyager 1 with its Deep Space Network. This network measures both the elevation and azimuth angles of the incoming radio waves from Voyager 1, and it also measures the distance from the Earth to Voyager 1.

On June 15, 2011, the distance to the interstellar medium was recalculated, which is now believed to be much less than previously thought. NASA believes that Voyager 1 may cross into the space between the stars sometime in the next year or so. The Low Energy Charged Particle device on Voyager 1 has detected the outward flow of the solar wind to be at zero. This means it is flowing parallel up and down to the Sun, signaling that the interstellar medium is very close. Voyager 2 still has more travel time before it reaches the interstellar medium, while scientists believed Voyager 1 will enter interstellar space "at any time".

On December 1, 2011, it was announced that Voyager 1 detected the first Lyman-alpha radiation originating from the Milky Way galaxy. Lyman-alpha radiation had previously been detected from other galaxies, but due to interference from the Sun, the radiation from the Milky Way was not detectable.

On December 5, 2011, it was announced that Voyager 1 had entered a new region referred to as a "cosmic purgatory" by NASA. Within this stagnation region, charged particles streaming from the Sun slow and turn inward, and the solar system's magnetic field has doubled in strength as interstellar space appears to be applying pressure. Energetic particles originating in the solar system have declined by nearly half, while the detection of high-energy electrons from outside has increased by 100 fold. The inner edge of the stagnation region is located approximately 113 astronomical units from the Sun, while the outer edge is unknown.

On June 14, 2012, NASA announced that Voyager 1 has reported a marked increase in its detection of charged particles from interstellar space, which are normally deflected by the solar winds within the heliosphere from the Sun. The craft thus begins to enter the interstellar medium at the "final frontier of the solar system", or the "edge of the Solar System". Voyager 1 is the farthest man-made object from Earth.

On September 5, 2012, Voyager 1 was in space for 35 years since its launch to Jupiter and Saturn. The craft is currently more than 11 billion miles from the sun. Twin Voyager 2, which celebrated its launch anniversary two weeks earlier, trails behind at 9 billion miles from the sun.

On September 9, 2012, Voyager 1 was 121.836 AU (1.82264×1010 km; 1.13254×1010 mi) from the Earth and 121.798 AU (1.82207×1010 km; 1.13218×1010 mi) from the Sun; and traveling at 17.043 km/s (38,120 mph) (relative to the Sun) and traveling outward at about 3.595 AU per year. Sunlight takes 16.89 hours to get to Voyager 1. The brightness of the Sun from the spacecraft is magnitude −16.3. Voyager 1 is heading in the direction of the constellation Ophiuchus. (To compare, Proxima Centauri, the closest star to our Sun, is about 4.2 light-years (or 2.65×105 AU) distant. Voyager 1's current relative velocity to the Sun is 17,043 m/s (61,350 km/h; 38,120 mph). This calculates as 3.592 AU per year, about 10% faster than Voyager 2. At this velocity, 73,775 years would pass before reaching the nearest star, Proxima Centauri, were the spacecraft traveling in the direction of that star. Voyager 1 will need about 17,565 years at its current velocity to travel a complete light year.)

Voyager 1 is predicted to enter the interstellar medium between 2012–15.

Read more about this topic:  Voyager 1

Famous quotes containing the words current and/or status:

    The current of our thoughts made as sudden bends as the river, which was continually opening new prospects to the east or south, but we are aware that rivers flow most rapidly and shallowest at these points.
    Henry David Thoreau (1817–1862)

    Recent studies that have investigated maternal satisfaction have found this to be a better prediction of mother-child interaction than work status alone. More important for the overall quality of interaction with their children than simply whether the mother works or not, these studies suggest, is how satisfied the mother is with her role as worker or homemaker. Satisfied women are consistently more warm, involved, playful, stimulating and effective with their children than unsatisfied women.
    Alison Clarke-Stewart (20th century)