V and Set Theory
If ω is the set of natural numbers, then Vω is the set of hereditarily finite sets, which is a model of set theory without the axiom of infinity. Vω+ω is the universe of "ordinary mathematics", and is a model of Zermelo set theory. If κ is an inaccessible cardinal, then Vκ is a model of Zermelo-Fraenkel set theory (ZFC) itself, and Vκ+1 is a model of Morse–Kelley set theory.
V is not "the set of all sets" for two reasons. First, it is not a set; although each individual stage Vα is a set, their union V is a proper class. Second, the sets in V are only the well-founded sets. The axiom of foundation (or regularity) demands that every set is well founded and hence in V, and thus in ZFC every set is in V. But other axiom systems may omit the axiom of foundation or replace it by a strong negation (for example is Aczel's anti-foundation axiom). These non-well-founded set theories are not commonly employed, but are still possible to study.
Read more about this topic: Von Neumann Universe
Famous quotes containing the words set and/or theory:
“From too much love of living,
From hope and fear set free,
We thank with brief thanksgiving
Whatever gods may be
That no life lives for ever;
That dead men rise up never;
That even the weariest river
Winds somewhere safe to sea.”
—A.C. (Algernon Charles)
“In the theory of gender I began from zero. There is no masculine power or privilege I did not covet. But slowly, step by step, decade by decade, I was forced to acknowledge that even a woman of abnormal will cannot escape her hormonal identity.”
—Camille Paglia (b. 1947)