Volcanology of Canada - Recent Activity

Recent Activity

Canada continues to be volcanically active, but the dispersed population has witnessed few eruptions due to the remoteness of the volcanoes and their low level of activity. The span of recorded and witnessed volcanic activity in Canada differs from region to region and at least two eruptions have been witnessed by people. Part of the Pacific Ring of Fire, more than 200 potentially active volcanoes exist throughout Canada, 49 of which have erupted in the past 10,000 years (Holocene). This is very recent in geological terms, suggesting volcanoes in Canada have ongoing activity. Ongoing scientific studies have indicated there have been earthquakes associated with at least ten Canadian volcanoes, including: Mount Garibaldi, Hoodoo Mountain, Castle Rock, Mount Cayley, The Volcano, Crow Lagoon, Silverthrone Caldera, Mount Meager, the Wells Gray-Clearwater volcanic field, and the Mount Edziza volcanic complex.

Mount Meager in the Garibaldi Volcanic Belt of southwestern British Columbia was the source for a massive (VEI-5) Plinian eruption 2,350 years ago similar in character to the 1980 eruption of Mount St. Helens in the U.S. state of Washington. The eruption originated from a vent on the northeast flank of Plinth Peak, the highest and one of four overlapping stratovolcanoes which together form the Mount Meager massif. This activity produced a diverse sequence of volcanic deposits, well exposed in bluffs along the 209 kilometres (130 mi) long Lillooet River, which are grouped as part of the Pebble Creek Formation. The explosive power associated with this Plinian eruption sent an ash column estimated to have risen at least 20 kilometres (12 mi) above Meager, indicating it entered the second major layer of the Earth's atmosphere. As prevailing winds sent ash and dust as far as 530 kilometres (330 mi) to the east, it created the large Bridge River Ash deposit, extending from Mount Meager to central Alberta. Pyroclastic flows travelled 7 kilometres (4 mi) downstream from the vent and buried trees along Meager's forested slopes, which were burned in place. An unusual, thick apron of welded vitrophyric breccia may represent the explosive collapse of a former lava dome which deposited ash several meters in thickness near the vent area. This collapse blocked the Lillooet River to a height of at least 100 metres (330 ft), forming a lake. The lake reached a maximum elevation of 810 metres (2,660 ft) and thus was at least 50 metres (160 ft) deep. The pyroclastic deposts blocking the Lillooet River eventually eroded from water activity, causing a massive outburst flood that sent small house-sized boulders down the Lillooet River valley, and formed 23 metres (75 ft) high Keyhole Falls. The final phase of activity produced a 2 kilometres (1.2 mi) long glassy dacite lava flow that varies from 15 to 20 m (49 to 66 ft) thick. This is the largest known explosive eruption in Canada in the past 10,000 years. Two clusters of hot springs are found at Mount Meager, suggesting magmatic heat is still present and volcanic activity continues.

The massive Mount Edziza volcanic complex in the Northern Cordilleran Volcanic Province of northern British Columbia has had more than 20 eruptions throughout the past 10,000 years (Holocene), including Mess Lake Cone, Kana Cone, Cinder Cliff, Icefall Cone, Ridge Cone, Williams Cone, Walkout Creek Cone, Moraine Cone, Sidas Cone, Sleet Cone, Storm Cone, Triplex Cone, Twin Cone, Cache Hill, Camp Hill, Cocoa Crater, Coffee Crater, Nahta Cone, Tennena Cone, The Saucer, and the well-preserved Eve Cone. Active or recently active hot springs are found in several areas along the western flank of Edziza's lava plateau, including Elwyn springs (36 °C), Taweh springs (46 °C), and inactive springs near Mess Lake. All three hydrothermal areas are near the youngest lava fields on the lava plateau and are probably associated with the most recent volcanic activity at the Mount Edziza volcanic complex. An undated pumice deposit exists throughout the complex estimated to be younger than 500 years old.

Kostal Cone in the Wells Gray-Clearwater volcanic field of east-central British Columbia is a cinder cone responsible for basaltic lava flows comprising a lava bed, damming the southern end of McDougall Lake. There has been activity at this site as recently as 7,600 years ago at Dragon Cone, though more likely less than 1,000 years ago. Kostal Cone is too young for the potassium-argon dating technique (usable on specimens over 100,000 years old), and no charred organic material for radiocarbon dating has been found. However, the uneroded structure of the cone with the existence of trees on its flanks and summit have made it an area for dendrochronology studies, which reveals the growth of tree-ring patterns. Tree-ring dating has revealed an age of about 400 years for Kostal Cone, indicating it formed around 1500. This makes Kostal Cone the youngest volcano in the Wells Gray-Clearwater volcanic field and thus one of the youngest in Canada.

Tseax Cone, a young cinder cone at the southernmost end of the Northern Cordilleran Volcanic Province, was the source for a major basalt lava flow eruption around the years 1750 and 1775 that travelled into the Tseax River, damming it and forming Lava Lake. The lava flow subsequently travelled 11 kilometres (7 mi) north to the Nass River, where it filled the flat valley floor for an additional 10 kilometres (6 mi), making the entire lava flow 22.5 kilometres (14.0 mi) long. Native legends from Nisga'a people in the area tell of a prolonged period of disruption by the volcano, including the destruction of two Nisga'a villages known as Lax Ksiluux and Wii Lax K'abit. Nisga'a people dug pits for shelter but at least 2,000 Nisga'a people were killed due to volcanic gases and poisonous smoke (most likely carbon dioxide). This is Canada's worst known geophysical disaster. It is the only eruption in Canada for which legends of First Nations people have been proven true. As of 1993, the Tseax Cone quietly rests in Nisga'a Memorial Lava Beds Provincial Park.

An eruption was reported by placer miners on November 8, 1898 in the Atlin Volcanic Field of the Northern Cordilleran Volcanic Province adjacent to Ruby Mountain volcano 80 kilometres (50 mi) south of Gladys Lake when volcanic ash was said to be falling for many days. During the eruption the adjacent placer miners were able to work at nights due to incandescent glow from the eruption. A news report published on December 1, 1898 by the American newspaper publisher The New York Times stated: Kinslee and T. P. James, Denver mining men who with Col. Hughes of Rossland have just returned from Alaska, report that a volcano is in active eruption about fifty miles from Atlin City. No name has yet been given to the volcano, but the officials of Atlin are preparing for a trip of inspection and will christen it. It is said to be the second in a string of four mountains lying fifty miles due south of Lake Gladys, all of which are more than 1,400 feet high. In 1898 the Atlin area was in dispute with the Alaska-British Columbia boundary, leading American news broadcasters stating the Atlin area was in Alaska rather than in northwestern British Columbia. This Alaska-British Columbia boundary dispute was eventually resolved by arbitration in 1903 and no evidence for the 1898 eruption has been found, leading researchers to speculate about the eruption and report it as uncertain.

The Volcano at the southern end of the Northern Cordilleran Volcanic Province just north of the Alaska-British Columbia boundary is probably the youngest in Canada. It is a poorly built cinder cone made of loose volcanic ash, lapilli-sized tephra and volcanic bombs. Lying above a remote mountain ridge in the Boundary Ranges of the Coast Mountains, it is responsible for lava flow eruptions in 1904 and older that traveled south 5 kilometres (3 mi) through river valleys where they crossed the border into the U.S. state of Alaska and dammed the Blue River, a short tributary of the Unuk River. In doing so it formed several small lakes. This eruption had a massive effect on fish, plant and animal inhabitants of the valley, but there is no record of its impact on people, most likely because people were not in the remote area. The entire length of the lava flows are at least 22 kilometres (14 mi) and still contain the original lava features from when they were erupted, including pressure ridges and lava channels. However, sections of the lava flows have collapsed into underlying lava tubes to form cavities. Tephra and scoria from The Volcano covers adjacent mountain ridges and even through it is very young, it has been reduced by erosion from alpine glacial ice found in the heavily glaciated Coast Mountains. The estimated volume of lava and ash from The Volcano is 2.2 km3 (1 cu mi).

A series of earthquakes of less than magnitude 3.0 were recorded by seismographs in the Baezaeko River region 20 kilometres (12 mi) west of Nazko Cone in the Anahim Volcanic Belt on October 9, 2007. The cause of these earthquakes was magma intruding into rock 25 kilometres (16 mi) below the surface. Since then more than 1,000 small earthquakes have been recorded. Because of the small size of the earthquake swarms, Natural Resources Canada has added more seismographs in the region for better location and depth accuracy. However, the size and number of the 2007 earthquake swarms indicate there is currently no threat of an eruption. Before magma could erupt in the area adjacent to Nazko Cone, it is expected the size and number of the earthquakes would rise considerably, presaging an eruption.

Read more about this topic:  Volcanology Of Canada

Famous quotes containing the word activity:

    The superstition respecting power and office is going to the ground. The stream of human affairs flows its own way, and is very little affected by the activity of legislators. What great masses of men wish done, will be done; and they do not wish it for a freak, but because it is their state and natural end.
    Ralph Waldo Emerson (1803–1882)

    Who shall set a limit to the influence of a human being? There are men, who, by their sympathetic attractions, carry nations with them, and lead the activity of the human race. And if there be such a tie, that, wherever the mind of man goes, nature will accompany him, perhaps there are men whose magnetisms are of that force to draw material and elemental powers, and, where they appear, immense instrumentalities organize around them.
    Ralph Waldo Emerson (1803–1882)