Vitiligo - Pathogenesis

Pathogenesis

Vitiligo is a disorder characterized by patchy loss of skin pigmentation due to immune attacks on melanocytes. Although there is no significant proof or evidence, many doctors believe that it can be caused by defects in many genes. Variations in genes that are part of the immune system or part of melanocytes have both been associated with vitiligo. The immune system genes are associated with other autoimmune disorders.

In one case, the gene TYR, which makes the melanocyte more susceptible to the immune system in vitiligo, also makes the melanocyte more susceptible to the immune system in the skin cancer malignant melanoma. So people with vitiligo caused by the TYR gene are less likely to have malignant melanoma.

A genomewide association study found 10 independent susceptibility loci for generalized vitiligo, responsible for 7.4% of the genetic risk. Some patients had vitiligo alone; others had generalized vitiligo with other autoimmune diseases. Most loci were associated with both forms. (The exception was PTPN22, which was only associated with generalized vitiligo.) In the MHC region, which controls the immune system, major association signals were identified in the class I gene region (between HLA-A and HLA-HGC9) and class II gene region (between HLA-DRB1 and HLA-DQA1). Outside the MHC region, association signals were identified near RERE, PTPN22, LPP, IL2RA, GZMB, UBASH3A and C1QTNF6 genes, which are associated with other autoimmune diseases. TYR encodes tyrosinase, which is not a component of the immune system, but is an enzyme of the melanocyte that catalyzes melanin biosynthesis, and a major autoantigen in generalized vitiligo. The major alleles of TYR are associated with vitiligo, and the minor alleles are associated with malignant melanoma. Vitiligo-associated 402R tyrosinase may be more efficiently presented to the immune system. Melanoma-associated 402Q may fail to be identified by the immune system.

The transcriptional profile of melanocytes from vitiligo patients have been studied. Oligonucleotide microarrays containing approximately 16,000 unique genes were used to analyse mRNA expression in melanocytes from vitiligo patients and age-matched healthy controls. In total, 859 genes were identified as differentially expressed.

Vitiligo is sometimes associated with autoimmune and inflammatory diseases, commonly thyroid overexpression and underexpression. A study comparing 656 people with and without vitiligo in 114 families found several mutations (single-nucleotide polymorphisms) in the NALP1 gene. The NALP1 gene, which is on chromosome 17 located at 17p13, is on a cascade that regulates inflammation and cell death, including myeloid and lymphoid cells, which are white cells that are part of the immune response. NALP1 is expressed at high levels in T cells and Langerhan cells, white blood cells that are involved in skin autoimmunity. Polymorphisms of CD4 were shown to be associated with the vitiligo and other autoimmune diseases like type I Diabetes Mellitus.

Among the inflammatory products of NALP1 are caspase 1 and caspase 7, which activate the inflammatory cytokine interleukin-1β. Interleukin-1β is expressed at high levels in patients with vitiligo. There are compounds which inhibit caspase and interleukin-1β, and so might be useful drugs for vitiligo and associated autoimmune diseases. In one of the mutations, the amino acid leucine in the NALP1 protein was replaced by histidine (Leu155->His). The original protein and sequence is highly conserved in evolution, and found in humans, chimpanzee, rhesus monkey, and bush baby, which means that it is an important protein and an alteration is likely to be harmful. Addison's disease (typically an autoimmune destruction of the adrenal glands) may cause vitiligo.

Read more about this topic:  Vitiligo