Practical Applications
Given the total mass and the scalars r and v at a single point of the orbit, one can compute r and v at any other point in the orbit.
Given the total mass and the scalars r and v at a single point of the orbit, one can compute the specific orbital energy, allowing an object orbiting a larger object to be classified as having not enough energy to remain in orbit, hence being "suborbital" (a ballistic missile, for example), having enough energy to be "orbital", but without the possibility to complete a full orbit anyway because it eventually collides with the other body, or having enough energy to come from and/or go to infinity (as a meteor, for example).
Read more about this topic: Vis-viva Equation
Famous quotes containing the word practical:
“Not many appreciate the ultimate power and potential usefulness of basic knowledge accumulated by obscure, unseen investigators who, in a lifetime of intensive study, may never see any practical use for their findings but who go on seeking answers to the unknown without thought of financial or practical gain.”
—Eugenie Clark (b. 1922)