Vertical-cavity Surface-emitting Laser - Structure

Structure

The laser resonator consists of two distributed Bragg reflector (DBR) mirrors parallel to the wafer surface with an active region consisting of one or more quantum wells for the laser light generation in between. The planar DBR-mirrors consist of layers with alternating high and low refractive indices. Each layer has a thickness of a quarter of the laser wavelength in the material, yielding intensity reflectivities above 99%. High reflectivity mirrors are required in VCSELs to balance the short axial length of the gain region.

In common VCSELs the upper and lower mirrors are doped as p-type and n-type materials, forming a diode junction. In more complex structures, the p-type and n-type regions may be embedded between the mirrors, requiring a more complex semiconductor process to make electrical contact to the active region, but eliminating electrical power loss in the DBR structure.

In laboratory investigation of VCSELs using new material systems, the active region may be pumped by an external light source with a shorter wavelength, usually another laser. This allows a VCSEL to be demonstrated without the additional problem of achieving good electrical performance; however such devices are not practical for most applications.

VCSELs for wavelengths from 650 nm to 1300 nm are typically based on gallium arsenide (GaAs) wafers with DBRs formed from GaAs and aluminium gallium arsenide (AlxGa(1-x)As). The GaAs–AlGaAs system is favored for constructing VCSELs because the lattice constant of the material does not vary strongly as the composition is changed, permitting multiple "lattice-matched" epitaxial layers to be grown on a GaAs substrate. However, the refractive index of AlGaAs does vary relatively strongly as the Al fraction is increased, minimizing the number of layers required to form an efficient Bragg mirror compared to other candidate material systems. Furthermore, at high aluminium concentrations, an oxide can be formed from AlGaAs, and this oxide can be used to restrict the current in a VCSEL, enabling very low threshold currents.

Recently the two main methods of restricting the current in a VCSEL were characterized by two types of VCSELs: ion-implanted VCSELs and Oxide VCSELs.

In the early 1990s, telecommunications companies tended to favor ion-implanted VCSELs. Ions, (often hydrogen ions, H+), were implanted into the VCSEL structure everywhere except the aperture of the VCSEL, destroying the lattice structure around the aperture, thus inhibiting the current. In the mid to late 1990s, companies moved towards the technology of oxide VCSELs. The current is confined in an oxide VCSEL by oxidizing the material around the aperture of the VCSEL. A high content aluminium layer that is grown within the VCSEL structure is the layer that is oxidized. Oxide VCSELs also often employ the ion implant production step. As a result in the oxide VCSEL, the current path is confined by the ion implant and the oxide aperture.

The initial acceptance of oxide VCSELs was plagued with concern about the apertures "popping off" due to the strain and defects of the oxidation layer. However, after much testing, the reliability of the structure has proven to be robust. As stated in one study by Hewlett Packard on oxide VCSELs, "The stress results show that the activation energy and the wearout lifetime of oxide VCSEL are similar to that of implant VCSEL emitting the same amount of output power."

A production concern also plagued the industry when moving the oxide VCSELs from research and development to production mode. The oxidation rate of the oxide layer was highly dependent on the aluminium content. Any slight variation in aluminium would change the oxidation rate sometimes resulting in apertures that were either too big or too small to meet the specification standards.

Longer wavelength devices, from 1300 nm to 2000 nm, have been demonstrated with at least the active region made of indium phosphide. VCSELs at even higher wavelengths are experimental and usually optically pumped. 1310 nm VCSELs are desirable as the dispersion of silica-based optical fiber is minimal in this wavelength range.

Read more about this topic:  Vertical-cavity Surface-emitting Laser

Famous quotes containing the word structure:

    A special feature of the structure of our book is the monstrous but perfectly organic part that eavesdropping plays in it.
    Vladimir Nabokov (1899–1977)

    The structure was designed by an old sea captain who believed that the world would end in a flood. He built a home in the traditional shape of the Ark, inverted, with the roof forming the hull of the proposed vessel. The builder expected that the deluge would cause the house to topple and then reverse itself, floating away on its roof until it should land on some new Ararat.
    —For the State of New Jersey, U.S. public relief program (1935-1943)

    With sixty staring me in the face, I have developed inflammation of the sentence structure and definite hardening of the paragraphs.
    James Thurber (1894–1961)