Uniformizable Space

Uniformizable Space

In mathematics, a topological space X is uniformizable if there exists a uniform structure on X which induces the topology of X. Equivalently, X is uniformizable if and only if it is homeomorphic to a uniform space (equipped with the topology induced by the uniform structure).

Any (pseudo)metrizable space is uniformizable since the (pseudo)metric uniformity induces the (pseudo)metric topology. The converse fails: There are uniformizable spaces which are not (pseudo)metrizable. However, it is true that the topology of a uniformizable space can always be induced by a family (mathematics) of pseudometrics; indeed, this is because any uniformity on a set X can be defined by a family of pseudometrics.

Showing that a space is uniformizable is much simpler than showing it is metrizable. In fact, uniformizability is equivalent to a common separation axiom:

A topological space is uniformizable if and only if it is completely regular.

Read more about Uniformizable Space:  Induced Uniformity, Fine Uniformity

Famous quotes containing the word space:

    ... the movie woman’s world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but it’s all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.
    Jeanine Basinger (b. 1936)