Uniformizable Space

Uniformizable Space

In mathematics, a topological space X is uniformizable if there exists a uniform structure on X which induces the topology of X. Equivalently, X is uniformizable if and only if it is homeomorphic to a uniform space (equipped with the topology induced by the uniform structure).

Any (pseudo)metrizable space is uniformizable since the (pseudo)metric uniformity induces the (pseudo)metric topology. The converse fails: There are uniformizable spaces which are not (pseudo)metrizable. However, it is true that the topology of a uniformizable space can always be induced by a family (mathematics) of pseudometrics; indeed, this is because any uniformity on a set X can be defined by a family of pseudometrics.

Showing that a space is uniformizable is much simpler than showing it is metrizable. In fact, uniformizability is equivalent to a common separation axiom:

A topological space is uniformizable if and only if it is completely regular.

Read more about Uniformizable Space:  Induced Uniformity, Fine Uniformity

Famous quotes containing the word space:

    But alas! I never could keep a promise. I do not blame myself for this weakness, because the fault must lie in my physical organization. It is likely that such a very liberal amount of space was given to the organ which enables me to make promises, that the organ which should enable me to keep them was crowded out. But I grieve not. I like no half-way things. I had rather have one faculty nobly developed than two faculties of mere ordinary capacity.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)