Uniform Tilings of The Euclidean Plane
There are symmetry groups on the Euclidean plane constructed from fundamental triangles: (4 4 2), (6 3 2), and (3 3 3). Each is represented by a set of lines of reflection that divide the plane into fundamental triangles.
These symmetry groups create 3 regular tilings, and 7 semiregular ones. A number of the semiregular tilings are repeated from different symmetry constructors.
A prismatic symmetry group represented by (2 2 2 2) represents by two sets of parallel mirrors, which in general can have a rectangular fundamental domain. It generates no new tilings.
A further prismatic symmetry group represented by (∞ 2 2) which has an infinite fundamental domain. It constructs two uniform tilings, the apeirogonal prism and apeirogonal antiprism.
The stacking of the finite faces of these two prismatic tilings constructs one non-Wythoffian uniform tiling of the plane. It is called the elongated triangular tiling, composed of alternating layers of squares and triangles.
Right angle fundamental triangles: (p q 2)
(p q 2) | Fund. triangles |
Parent | Truncated | Rectified | Bitruncated | Birectified (dual) |
Cantellated | Omnitruncated |
Snub |
---|---|---|---|---|---|---|---|---|---|
Wythoff symbol | q | p 2 | 2 q | p | 2 | p q | 2 p | q | p | q 2 | p q | 2 | p q 2 | | | p q 2 | |
Schläfli symbol | t0{p,q} | t0,1{p,q} | t1{p,q} | t1,2{p,q} | t2{p,q} | t0,2{p,q} | t0,1,2{p,q} | s{p,q} | |
Coxeter-Dynkin diagram | |||||||||
Vertex figure | pq | (q.2p.2p) | (p.q.p.q) | (p.2q.2q) | qp | (p.4.q.4) | (4.2p.2q) | (3.3.p.3.q) | |
Square tiling (4 4 2) |
V4.8.8 |
{4,4} |
4.8.8 |
4.4.4.4 |
4.8.8 |
{4,4} |
4.4.4.4 |
4.8.8 |
3.3.4.3.4 |
Hexagonal tiling (6 3 2) |
V4.6.12 |
{6,3} |
3.12.12 |
3.6.3.6 |
6.6.6 |
{3,6} |
3.4.6.4 |
4.6.12 |
3.3.3.3.6 |
General fundamental triangles: (p q r)
Wythoff symbol (p q r) |
Fund. triangles |
q | p r | r q | p | r | p q | r p | q | p | q r | p q | r | p q r | | | p q r |
---|---|---|---|---|---|---|---|---|---|
Coxeter-Dynkin diagram | |||||||||
Vertex figure | (p.q)r | (r.2p.q.2p) | (p.r)q | (q.2r.p.2r) | (q.r)p | (q.2r.p.2r) | (r.2q.p.2q) | (3.r.3.q.3.p) | |
Triangular (3 3 3) |
V6.6.6 |
(3.3)3 |
3.6.3.6 |
(3.3)3 |
3.6.3.6 |
(3.3)3 |
3.6.3.6 |
6.6.6 |
3.3.3.3.3.3 |
Non-simplical fundamental domains
The only possible fundamental domain in Euclidean 2-space that is not a simplex is the rectangle (∞ 2 ∞ 2), with Coxeter-Dynkin diagram: . All forms generated from it become a square tiling.
Read more about this topic: Uniform Tiling
Famous quotes containing the words uniform and/or plane:
“An accent mark, perhaps, instead of a whole western accenta point of punctuation rather than a uniform twang. That is how it should be worn: as a quiet point of character reference, an apt phrase of sartorial allusionmacho, sotto voce.”
—Phil Patton (b. 1953)
“Have you ever been up in your plane at night, alone, somewhere, 20,000 feet above the ocean?... Did you ever hear music up there?... Its the music a mans spirit sings to his heart, when the earths far away and there isnt any more fear. Its the high, fine, beautiful sound of an earth-bound creature who grew wings and flew up high and looked straight into the face of the future. And caught, just for an instant, the unbelievable vision of a free man in a free world.”
—Dalton Trumbo (19051976)