Definition in Higher Dimension in Riemannian Manifolds
A point p in a Riemannian submanifold is umbilical if, at p, the (vector-valued) Second fundamental form is some normal vector tensor the induced metric (First fundamental form). Equivalently, for all vectors U, V at p, II(U, V) = gp(U, V), where is the mean curvature vector at p.
A submanifold is said to be umbilic (or all-umbilic) if this condition holds at every point "p". This is equivalent to saying that the submanifold can be made totally geodesic by an appropriate conformal change of the metric of the surrounding ("ambient") manifold. For example, a surface in Euclidean space is umbilic if and only if it is a piece of a sphere.
Read more about this topic: Umbilical Point
Famous quotes containing the words definition in, definition, higher and/or dimension:
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“They say the seeds of what we will do are in all of us, but it always seemed to me that in those who make jokes in life the seeds are covered with better soil and with a higher grade of manure.”
—Ernest Hemingway (18991961)
“By intervening in the Vietnamese struggle the United States was attempting to fit its global strategies into a world of hillocks and hamlets, to reduce its majestic concerns for the containment of communism and the security of the Free World to a dimension where governments rose and fell as a result of arguments between two colonels wives.”
—Frances Fitzgerald (b. 1940)