An important class of ultralimits are the so-called asymptotic cones of metric spaces. Let (X,d) be a metric space, let ω be a non-principal ultrafilter on and let pn ∈ X be a sequence of base-points. Then the ω–ultralimit of the sequence is called the asymptotic cone of X with respect to ω and and is denoted . One often takes the base-point sequence to be constant, pn = p for some p ∈ X; in this case the asymptotic cone does not depend on the choice of p ∈ X and is denoted by or just .
The notion of an asymptotic cone plays an important role in geometric group theory since asymptotic cones (or, more precisely, their topological types and bi-Lipschitz types) provide quasi-isometry invariants of metric spaces in general and of finitely generated groups in particular. Asymptotic cones also turn out to be a useful tool in the study of relatively hyperbolic groups and their generalizations.
Read more about this topic: Ultralimit
Famous quotes containing the word cones:
“...there was the annual Fourth of July picketing at Independence Hall in Philadelphia. ...I thought it was ridiculous to have to go there in a skirt. But I did it anyway because it was something that might possibly have an effect. I remember walking around in my little white blouse and skirt and tourists standing there eating their ice cream cones and watching us like the zoo had opened.”
—Martha Shelley, U.S. author and social activist. As quoted in Making History, part 3, by Eric Marcus (1992)