Turbomolecular Pump - Operating Principles

Operating Principles

Most turbomolecular pumps employ multiple stages consisting of rotor/stator pairs mounted in series. Gas captured by the upper stages is pushed into the lower stages and successively compressed to the level of the fore-vacuum (backing pump) pressure. As the gas molecules enter through the inlet, the rotor, which has a number of angled blades, hits the molecules. Thus the mechanical energy of the blades is transferred to the gas molecules. With this newly acquired momentum, the gas molecules enter into the gas transfer holes in the stator. This leads them to the next stage where they again collide with the rotor surface, and this process is continued, finally leading them outwards through the exhaust.

Because of the relative motion of rotor and stator, molecules preferentially hit the lower side of the blades. Because the blade surface looks down, most of the scattered molecules will leave it downwards. The surface is rough, so no reflection will occur. A blade needs to be thick and stable for high pressure operation and as thin as possible and slightly bent for maximum compression. For high compression ratios the throat between adjacent rotor blades (as shown in the image) is pointing as much as possible in the forward direction. For high flow rates the blades are at 45° and reach close to the axis.

Because the compression of each stage is ~10, each stage closer to the outlet is considerably smaller than the preceding inlet stages. This has two consequences. The geometric progression tells us that infinite stages could ideally fit into a finite axial length. The finite length in this case is the full height of the housing as the bearings, the motor, and controller and some of the coolers can be installed inside on the axis. Radially, to grasp as much of the thin gas at the entrance, the inlet-side rotors would ideally have a larger radius, and correspondingly higher centrifugal force; ideal blades would get exponentially thinner towards their tips and carbon fibers should reinforce the aluminium blades. However, because the average speed of a blade affects pumping so much this is done by increasing the root diameter rather than the tip diameter where practical.

Turbomolecular pumps must operate at very high speeds, and the friction heat buildup imposes design limitations. Some turbomolecular pumps use magnetic bearings to reduce friction and oil contamination. Because the magnetic bearings and the temperature cycles allow for only a limited clearance between rotor and stator, the blades at the high pressure stages are somewhat degenerated into a single helical foil each. Laminar flow cannot be used for pumping, because laminar turbines stall when not used at the designed flow. The pump can be cooled down to improve the compression, but should not be so cold as to condense ice on the blades. When a turbopump is stopped, the oil from the backing vacuum may backstream through the turbopump and contaminate the chamber. One way to prevent this is to introduce a laminar flow of nitrogen through the pump. The transition from vacuum to nitrogen and from a running to a still turbopump has to be synchronized precisely to avoid mechanical stress to the pump and overpressure at the exhaust. A thin membrane and a valve at the exhaust should be added to protect the turbopump from excessive back pressure (e.g. after a power failure or leaks in the backing vacuum).

The rotor is stabilized in all of its six degrees of freedom. One degree is governed by the electric motor. Minimally, this degree must be stabilized electronically (or by a diamagnetic material, which is too unstable to be used in a precision pump bearing). Another way (ignoring losses in magnetic cores at high frequencies) is to construct this bearing as an axis with a sphere at each end. These spheres are inside hollow static spheres. On the surface of each sphere is a checkerboard pattern of inwards and outwards going magnetic field lines. As the checkerboard pattern of the static spheres is rotated, the rotor rotates. In this construction no axis is made stable on the cost of making another axis unstable, but all axes are neutral and the electronic regulation is less stressed and will be more dynamically stable. Hall effect sensors can be used to sense the rotational position and the other degrees of freedom can be measured capacitively.

Read more about this topic:  Turbomolecular Pump

Famous quotes containing the words operating and/or principles:

    I love meetings with suits. I live for meetings with suits. I love them because I know they had a really boring week and I walk in there with my orange velvet leggings and drop popcorn in my cleavage and then fish it out and eat it. I like that. I know I’m entertaining them and I know that they know. Obviously, the best meetings are with suits that are intelligent, because then things are operating on a whole other level.
    Madonna [Madonna Louise Ciccione] (b. 1959)

    [E]very thing is useful which contributes to fix us in the principles and practice of virtue.
    Thomas Jefferson (1743–1826)