Turbojet - History

History

The first patent for using a gas turbine to power an aircraft was filed in 1921 by Frenchman Maxime Guillaume. His engine was to be an axial-flow turbojet, but was never constructed, as it would have required considerable advances over the state of the art in compressors.

Practical axial compressors were made possible by ideas from A.A.Griffith in a seminal paper in 1926 ("An Aerodynamic Theory of Turbine Design").

On 27 August 1939 the Heinkel He 178 became the world's first aircraft to fly under turbojet power with test-pilot Erich Warsitz at the controls, thus becoming the first practical jet plane. The first two operational turbojet aircraft, the Messerschmitt Me 262 and then the Gloster Meteor entered service towards the end of World War II in 1944.

A turbojet engine is used primarily to propel aircraft, but has been used for other vehicles, such as cars. Air is drawn into the rotating compressor via the intake and is compressed to a higher pressure before entering the combustion chamber. Fuel is mixed with the compressed air and ignited by a flame in the eddy of a flame holder. This combustion process significantly raises the temperature of the gas. Hot combustion products leaving the combustor expand through the turbine where power is extracted to drive the compressor. Although this expansion process reduces the turbine exit gas temperature and pressure, both parameters are usually still well above ambient conditions. The gas stream exiting the turbine expands to ambient pressure via the propelling nozzle, producing a high velocity jet in the exhaust plume. If the momentum of the exhaust stream exceeds the momentum of the intake stream, the impulse is positive, thus, there is a net forward thrust upon the airframe.

Early generation jet engines were pure turbojets, designed initially to use a centrifugal compressor (as in the Heinkel HeS 3), and very shortly afterwards began to use Axial compressors (as in the Junkers Jumo 004) for a smaller diameter to the overall engine housing. They were used because they were able to achieve very high altitudes and speeds, much higher than propeller engines, because of a better compression ratio and because of their high exhaust speed. However, they were not very fuel efficient. Modern jet engines are mainly turbofans, where a proportion of the air entering the intake bypasses the combustor; this proportion depends on the engine's bypass ratio. This makes turbofans much more efficient than turbojets at high subsonic/transonic and low supersonic speeds.

One of the most recent uses of turbojet engines was the Olympus 593 on Concorde. Concorde used turbojet engines because it turns out that the small cross-section and high exhaust speed is ideal for operation at Mach 2. Concorde's engine burnt less fuel to produce a given thrust for a mile at Mach 2.0 than a modern high-bypass turbofan such as General Electric CF6 at its Mach 0.86 optimum speed. Concorde's airframe, however, was far less efficient than that of any subsonic airliner.

Turbojet engines had a significant impact on commercial aviation. Aside from being faster than piston engines, turbojets had greater reliability, with some models demonstrating dispatch reliability rating in excess of 99.9%. Pre-jet commercial aircraft were designed with as many as 4 engines in part because of concerns over in-flight failures. Overseas flight paths were plotted to keep planes within an hour of a landing field, lengthening flights. Turbojets' reliability allowed for three and two-engine designs, and more direct long-distance flights.

Although ramjet engines are simpler in design as they have virtually no moving parts, they are incapable of operating at low flight speeds.

Read more about this topic:  Turbojet

Famous quotes containing the word history:

    The myth of independence from the mother is abandoned in mid- life as women learn new routes around the mother—both the mother without and the mother within. A mid-life daughter may reengage with a mother or put new controls on care and set limits to love. But whatever she does, her child’s history is never finished.
    Terri Apter (20th century)

    The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.
    Gertrude Stein (1874–1946)

    The best history is but like the art of Rembrandt; it casts a vivid light on certain selected causes, on those which were best and greatest; it leaves all the rest in shadow and unseen.
    Walter Bagehot (1826–1877)