Tukey Lambda Distribution - Moments

Moments

The Tukey lambda distribution is symmetric around zero, therefore the expected value of this distribution is equal to zero. The variance exists for λ > −½ and is given by the formula (except when λ = 0)

 \operatorname{Var} = \frac{2}{\lambda^2}\bigg(\frac{1}{1+2\lambda} - \frac{\Gamma(\lambda+1)^2}{\Gamma(2\lambda+2)}\bigg).

More generally, the n-th order moment is finite when λ > −1/n and is expressed in terms of the beta function Β(x,y) (except when λ = 0) :

 \mu_n = \operatorname{E} = \frac{1}{\lambda^n} \sum_{k=0}^n (-1)^k {n \choose k}\, \Beta(\lambda k+1,\, \lambda(n-k)+1 ).

Note that due to symmetry of the density function, all moments of odd orders are equal to zero.

Read more about this topic:  Tukey Lambda Distribution

Famous quotes containing the word moments:

    Quidquid luce fuit tenebris agit: but also the other way around. What we experience in dreams, so long as we experience it frequently, is in the end just as much a part of the total economy of our soul as anything we “really” experience: because of it we are richer or poorer, are sensitive to one need more or less, and are eventually guided a little by our dream-habits in broad daylight and even in the most cheerful moments occupying our waking spirit.
    Friedrich Nietzsche (1844–1900)

    It is time to provide a smashing answer for those cynical men who say that a democracy cannot be honest, cannot be efficient.... We have in the darkest moments of our national trials retained our faith in our own ability to master our own destiny.
    Franklin D. Roosevelt (1882–1945)

    I like to compare the holiday season with the way a child listens to a favorite story. The pleasure is in the familiar way the story begins, the anticipation of familiar turns it takes, the familiar moments of suspense, and the familiar climax and ending.
    Fred Rogers (20th century)