Tribocorrosion - Passive Metals

Passive Metals

While tribocorrosion phenomena may affect many materials, they are most critical for metals, especially the normally corrosion resistant so-called passive metals. The vast majority of corrosion resistant metals and alloys used in engineering (stainless steels, titanium, aluminium etc.) fall into this category. These metals are thermodynamically unstable in the presence of oxygen or water and they derive their corrosion resistance from the presence at the surface of a thin oxide film, called the passive film, which acts as a protective barrier between the metal and its environment. Passive films are usually just a few atomic layers thick. Nevertheless, they can provide excellent corrosion protection because if damaged accidentally they spontaneously self-heal by metal oxidation. However, when a metal surface is subjected to severe rubbing or to a stream of impacting particles the passive film damage becomes continuous and extensive. The self-healing process may no longer be effective and in addition it requires a high rate of metal oxidation. In other words, the underlying metal will strongly corrode before the protective passive film is reformed, if at all. In such a case, the total material loss due to tribocorrosion will be much higher than the sum of wear and corrosion one would measure in experiments with the same metal where only wear or only corrosion takes place. The example illustrates the fact that the rate of tribocorrosion is not simply the addition of the rate of wear and the rate of corrosion but it is strongly affected by synergistic and antagonistic effects between mechanical and chemical mechanisms. To study such effects in the laboratory, one most often uses mechanical wear testing rigs which are equipped with an electrochemical cell. This permits one to control independently the mechanical and chemical parameters. For example, by imposing a given potential to the rubbing metal one can simulate the oxidation potential of the environment and in addition, under certain conditions, the current flow is a measure of the instantaneous corrosion rate. For a deeper understanding tribocorrosion experiments are supplemented by detailed microscopic and analytical studies of the contacting surfaces.

At high temperatures, the more rapid generation of oxide due to a combination of temperature and tribological action during sliding wear can generate potentially wear resistant oxide layers known as 'glazes'. Under such circumstances, tribocorrosion can be used potentially in a beneficial way.

Read more about this topic:  Tribocorrosion

Famous quotes containing the words passive and/or metals:

    We have not passed that subtle line between childhood and adulthood until we move from the passive voice to the active voice—that is, until we have stopped saying “It got lost,” and say, “I lost it.”
    Sydney J. Harris (b. 1917)

    When human beings have been fascinated by the contemplation of their own hearts, the more intricate biological pattern of the female has become a model for the artist, the mystic, and the saint. When mankind turns instead to what can be done, altered, built, invented, in the outer world, all natural properties of men, animals, or metals become handicaps to be altered rather than clues to be followed.
    Margaret Mead (1901–1978)