Translinear Circuit

A translinear circuit is a circuit that carries out its function using the translinear principle. These are current-mode circuits that can be made using transistors that obey an exponential current-voltage characteristic—this includes BJTs and CMOS transistors in weak inversion.

The word translinear (TL) was invented by Barrie Gilbert in 1975 to describe circuits that used the exponential current-voltage relation of BJTs. By using this exponential relationship, this class of circuits can implement multiplication, amplification and power-law relationships. When Barrie Gilbert described this class of circuits he also described the translinear principle (TLP) which made the analysis of these circuits possible in a way that the previous view of BJTs as linear current amplifiers did not allow. TLP was later extended to include other elements that obey an exponential current-voltage relationship (such as CMOS transistors in weak inversion).

The TLP has been used in a variety of circuits including vector arithmetic circuits, current conveyors, current-mode operational amplifiers, and RMS-DC converters. It has been in use since the 1960s (by Gilbert), but was not formalized until 1975. In the 1980s, Evert Seevinck's work helped to create a systematic process for translinear circuit design. In 1990 Seevinck invented a circuit he called a companding current-mode integrator that was effectively a first-order log-domain filter. A version of this was generalized in 1993 by Douglas Frey and the connection between this class of filters and TL circuits was made most explicit in the late 90s work of Jan Mulder et al. where they describe the dynamic translinear principle. More work by Seevinck led to synthesis techniques for extremely low-power TL circuits. More recent work in the field has led to the voltage-translinear principle, multiple-input translinear element networks, and field-programmable analog arrays (FPAAs).


Read more about Translinear Circuit:  The Translinear Principle

Famous quotes containing the word circuit:

    We are all hostages, and we are all terrorists. This circuit has replaced that other one of masters and slaves, the dominating and the dominated, the exploiters and the exploited.... It is worse than the one it replaces, but at least it liberates us from liberal nostalgia and the ruses of history.
    Jean Baudrillard (b. 1929)