Transformer - Equivalent Circuit

Equivalent Circuit

Refer to the diagram below

The physical limitations of the practical transformer may be brought together as an equivalent circuit model (shown below) built around an ideal lossless transformer. Power loss in the windings is current-dependent and is represented as in-series resistances Rp and Rs. Flux leakage results in a fraction of the applied voltage dropped without contributing to the mutual coupling, and thus can be modeled as reactances of each leakage inductance Xp and Xs in series with the perfectly coupled region.

Iron losses are caused mostly by hysteresis and eddy current effects in the core, and are proportional to the square of the core flux for operation at a given frequency. Since the core flux is proportional to the applied voltage, the iron loss can be represented by a resistance RC in parallel with the ideal transformer.

A core with finite permeability requires a magnetizing current Im to maintain the mutual flux in the core. The magnetizing current is in phase with the flux. Saturation effects cause the relationship between the two to be non-linear, but for simplicity this effect tends to be ignored in most circuit equivalents. With a sinusoidal supply, the core flux lags the induced EMF by 90° and this effect can be modeled as a magnetizing reactance (reactance of an effective inductance) Xm in parallel with the core loss component, Rc. Rc and Xm are sometimes together termed the magnetizing branch of the model. If the secondary winding is made open-circuit, the current I0 taken by the magnetizing branch represents the transformer's no-load current.

The secondary impedance Rs and Xs is frequently moved (or "referred") to the primary side after multiplying the components by the impedance scaling factor (Np/Ns)2.

The resulting model is sometimes termed the "exact equivalent circuit", though it retains a number of approximations, such as an assumption of linearity. Analysis may be simplified by moving the magnetizing branch to the left of the primary impedance, an implicit assumption that the magnetizing current is low, and then summing primary and referred secondary impedances, resulting in so-called equivalent impedance.

The parameters of equivalent circuit of a transformer can be calculated from the results of two transformer tests: open-circuit test and short-circuit test.


Read more about this topic:  Transformer

Famous quotes containing the words equivalent and/or circuit:

    For some men the power to destroy life becomes the equivalent to the female power to create life.
    Myriam Miedzian, U.S. author. Boys Will Be Boys, ch. 4 (1991)

    We are all hostages, and we are all terrorists. This circuit has replaced that other one of masters and slaves, the dominating and the dominated, the exploiters and the exploited.... It is worse than the one it replaces, but at least it liberates us from liberal nostalgia and the ruses of history.
    Jean Baudrillard (b. 1929)