Transcendence Theory - Approaches

Approaches

A typical problem in this area of mathematics is to work out whether a given number is transcendental. Cantor used a cardinality argument to show that there are only countably many algebraic numbers, and hence almost all numbers are transcendental. Transcendental numbers therefore represent the typical case; even so, it may be extremely difficult to prove that a given number is transcendental (or even simply irrational).

For this reason transcendence theory often works towards a more quantitative approach. So given a particular complex number α one can ask how close α is to being an algebraic number. For example, if one supposes that the number α is algebraic then can one show that it must have very high degree or a minimum polynomial with very large coefficients? Ultimately if it is possible to show that no finite degree or size of coefficient is sufficient then the number must be transcendental. Since a number α is transcendental if and only if P(α)≠0 for every non-zero polynomial P with integer coefficents, this problem can be approached by trying to find lower bounds of the form

where the right hand side is some positive function depending on some measure A of the size of the coefficients of P, and its degree d, and such that these lower bounds apply to all P ≠ 0. Such a bound is called a transcendence measure.

The case of d = 1 is that of "classical" diophantine approximation asking for lower bounds for

.

The methods of transcendence theory and diophantine approximation have much in common: they both use the auxiliary function concept.

Read more about this topic:  Transcendence Theory

Famous quotes containing the word approaches:

    The closer a man approaches tragedy the more intense is his concentration of emotion upon the fixed point of his commitment, which is to say the closer he approaches what in life we call fanaticism.
    Arthur Miller (b. 1915)

    I should say that the most prominent scientific men of our country, and perhaps of this age, are either serving the arts and not pure science, or are performing faithful but quite subordinate labors in particular departments. They make no steady and systematic approaches to the central fact.... There is wanting constant and accurate observation with enough of theory to direct and discipline it. But, above all, there is wanting genius.
    Henry David Thoreau (1817–1862)

    The Oriental philosophy approaches easily loftier themes than the modern aspires to; and no wonder if it sometimes prattle about them. It only assigns their due rank respectively to Action and Contemplation, or rather does full justice to the latter. Western philosophers have not conceived of the significance of Contemplation in their sense.
    Henry David Thoreau (1817–1862)