Tin(II) Chloride - Chemical Properties

Chemical Properties

Tin(II) chloride can dissolve in less than its own mass of water without apparent decomposition, but as the solution is diluted hydrolysis occurs to form an insoluble basic salt:

SnCl2 (aq) + H2O (l) Sn(OH)Cl (s) + HCl (aq)

Therefore if clear solutions of tin(II) chloride are to be used, it must be dissolved in hydrochloric acid (typically of the same or greater molarity as the stannous chloride) to maintain the equilibrium towards the left-hand side (using Le Chatelier's principle). Solutions of SnCl2 are also unstable towards oxidation by the air:

6 SnCl2 (aq) + O2 (g) + 2 H2O (l) → 2 SnCl4 (aq) + 4 Sn(OH)Cl (s)

This can be prevented by storing the solution over lumps of tin metal.

There are many such cases where tin(II) chloride acts as a reducing agent, reducing silver and gold salts to the metal, and iron(III) salts to iron(II), for example:

SnCl2 (aq) + 2 FeCl3 (aq) → SnCl4 (aq) + 2 FeCl2 (aq)

It also reduces copper(II) to copper(I).

Solutions of tin(II) chloride can also serve simply as a source of Sn2+ ions, which can form other tin(II) compounds via precipitation reactions. For example, reaction with sodium sulfide produces the brown/black tin(II) sulfide:

SnCl2 (aq) + Na2S (aq) → SnS (s) + 2 NaCl (aq)

If alkali is added to a solution of SnCl2, a white precipitate of hydrated tin(II) oxide forms initially; this then dissolves in excess base to form a stannite salt such as sodium stannite:

SnCl2(aq) + 2 NaOH (aq) → SnO·H2O (s) + 2 NaCl (aq)
SnO·H2O (s) + NaOH (aq) → NaSn(OH)3 (aq)

Anhydrous SnCl2 can be used to make a variety of interesting tin(II) compounds in non-aqueous solvents. For example, the lithium salt of 4-methyl-2,6-di-tert-butylphenol reacts with SnCl2 in THF to give the yellow linear two-coordinate compound Sn(OAr)2 (Ar = aryl).

Tin(II) chloride also behaves as a Lewis acid, forming complexes with ligands such as chloride ion, for example:

SnCl2 (aq) + CsCl (aq) → CsSnCl3 (aq)

Most of these complexes are pyramidal, and since complexes such as SnCl3 have a full octet, there is little tendency to add more than one ligand. The lone pair of electrons in such complexes is available for bonding, however, and therefore the complex itself can act as a Lewis base or ligand. This seen in the ferrocene-related product of the following reaction :

SnCl2 + Fe(η5-C5H5)(CO)2HgCl → Fe(η5-C5H5)(CO)2SnCl3 + Hg

SnCl2 can be used to make a variety of such compounds containing metal-metal bonds. For example, the reaction with dicobalt octacarbonyl:

SnCl2 + Co2(CO)8 → (CO)4Co-(SnCl2)-Co(CO)4

Read more about this topic:  Tin(II) Chloride

Famous quotes containing the words chemical and/or properties:

    We do not want actions, but men; not a chemical drop of water, but rain; the spirit that sheds and showers actions, countless, endless actions.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)