Theories of General Anaesthetic Action - Modern Lipid Hypothesis

Modern Lipid Hypothesis

The modern version of lipid hypothesis states that anaesthetic effect happens if solubilization of general anaesthetic in the bilayer causes a redistribution of membrane lateral pressures.

Each bilayer membrane has a distinct profile of how lateral pressures are distributed within it. Most membrane proteins especially ion channels are sensitive to changes in this lateral pressure distribution profile. These lateral stresses are rather large and vary with depth within the membrane. According to the modern lipid hypothesis a change in the membrane lateral pressure profile shifts the conformational equilibrium of certain membrane proteins known to be affected by clinical concentrations of anaesthetics such as ligand-gated ion channels. This mechanism is also nonspecific because the potency of the anaesthetic is determined not by its actual chemical structure, but by the positional and orientational distribution of its segments and bonds within the bilayer. However, it is still not obvious what the exact molecular mechanism is... A detailed mechanism of general anaesthesia was suggested and investigated using lattice statistical thermodynamics. It was proposed that incorporation of amphiphilic and other interfacially active solutes (e.g. general anaesthetics) into the bilayer increases the lateral pressure selectively near the aqueous interfaces, which is compensated by a decrease in lateral pressure toward the centre of the bilayer. Calculations showed that general anaesthesia likely involves inhibition of the opening of the ion channel in a postsynaptic ligand-gated membrane protein by the following mechanism:

  • A channel tries to open in response to a nerve impulse thus increasing the cross-sectional area of the protein more near the aqueous interface than in the middle of the bilayer;
  • Then the anaesthetic-induced increase in lateral pressure near the interface shifts the protein conformational equilibrium back to the closed state, since channel opening will require greater work against the higher pressure at interface. This is the first hypothesis that provided not just correlations of potency with structural or thermodynamic properties, but a detailed mechanistic and thermodynamic understanding of anaesthesia.

Thus, according to the modern lipid hypothesis anaesthetics do not act directly on their membrane protein targets, but rather perturb specialized lipid matrices at the protein-lipid interface, which act as mediators. This is a new kind of transduction mechanism, different from the usual key-lock interaction of ligand and receptor, where the anaesthetic (ligand) affects the function of membrane proteins by binding to the specific site on the protein. Thus, some membrane proteins are proposed to be sensitive to their lipid environment. A slightly different detailed molecular mechanism of how bilayer perturbation can influence the ion-channel was proposed in the same year. Oleamide (fatty acid amide of oleic acid) is an endogenous anaesthetic found in vivo (in the cat’s brain) and it is known to potentiate sleep and lower the temperature of the body by closing the gap junction channel connexion. The detailed mechanism is shown on the picture: the well ordered lipid(green)/cholesterol(yellow) ring that exists around connexon (magenta) becomes disordered on treatment with anaesthetic (red triangles), promoting a closure of connexon ion channel. This decreases brain activity and induces lethargy and anaesthetic effect.

Read more about this topic:  Theories Of General Anaesthetic Action

Famous quotes containing the words modern and/or hypothesis:

    So all that is said of the wise man by Stoic or Oriental or modern essayist, describes to each reader his own idea, describes his unattained but attainable self.
    Ralph Waldo Emerson (1803–1882)

    The wheels and springs of man are all set to the hypothesis of the permanence of nature. We are not built like a ship to be tossed, but like a house to stand.
    Ralph Waldo Emerson (1803–1882)