Systems Theory - Overview

Overview

Contemporary ideas from systems theory have grown with diversified areas, exemplified by the work of biologist Ludwig von Bertalanffy, linguist Béla H. Bánáthy, ecological systems with Howard T. Odum, Eugene Odum and Fritjof Capra, organizational theory and management with individuals such as Peter Senge, interdisciplinary study with areas like Human Resource Development from the work of Richard A. Swanson, and insights from educators such as Debora Hammond and Alfonso Montuori. As a transdisciplinary, interdisciplinary and multiperspectival domain, the area brings together principles and concepts from ontology, philosophy of science, physics, computer science, biology, and engineering as well as geography, sociology, political science, psychotherapy (within family systems therapy) and economics among others. Systems theory thus serves as a bridge for interdisciplinary dialogue between autonomous areas of study as well as within the area of systems science itself.

In this respect, with the possibility of misinterpretations, von Bertalanffy believed a general theory of systems "should be an important regulative device in science," to guard against superficial analogies that "are useless in science and harmful in their practical consequences." Others remain closer to the direct systems concepts developed by the original theorists. For example, Ilya Prigogine, of the Center for Complex Quantum Systems at the University of Texas, Austin, has studied emergent properties, suggesting that they offer analogues for living systems. The theories of autopoiesis of Francisco Varela and Humberto Maturana are a further development in this field. Important names in contemporary systems science include Russell Ackoff, Béla H. Bánáthy, Anthony Stafford Beer, Peter Checkland, Robert L. Flood, Fritjof Capra, Michael C. Jackson, Edgar Morin and Werner Ulrich, among others.

With the modern foundations for a general theory of systems following the World Wars, Ervin Laszlo, in the preface for Bertalanffy's book Perspectives on General System Theory, maintains that the translation of "general system theory" from German into English has "wrought a certain amount of havoc". The preface explains that the original concept of a general system theory was "Allgemeine Systemtheorie (or Lehre)", pointing out the fact that "Theorie" (or "Lehre") just as "Wissenschaft" (translated Scholarship), "has a much broader meaning in German than the closest English words ‘theory’ and ‘science'". With these ideas referring to an organized body of knowledge and "any systematically presented set of concepts, whether they are empirical, axiomatic, or philosophical, "Lehre" is associated with theory and science in the etymology of general systems, but also does not translate from the German very well; "teaching" is the "closest equivalent", but "sounds dogmatic and off the mark". While many of the root meanings for the idea of a "general systems theory" might have been lost in the translation and many were led to believe that the systems theorists had articulated nothing but a pseudoscience, systems theory became the name used by early investigators for the interdependence of relationships created in organizations by defining a new way of thinking about science and scientific paradigms.

A system from this frame of reference is composed of regularly interacting or interrelating groups of activities. For example, in noting the influence in organizational psychology as the field evolved from "an individually oriented industrial psychology to a systems and developmentally oriented organizational psychology," it was recognized that organizations are complex social systems; reducing the parts from the whole reduces the overall effectiveness of organizations. This is different from conventional models that center on individuals, structures, departments and units separate in part from the whole instead of recognizing the interdependence between groups of individuals, structures and processes that enable an organization to function. Laszlo explains that the new systems view of organized complexity went "one step beyond the Newtonian view of organized simplicity" in reducing the parts from the whole, or in understanding the whole without relation to the parts. The relationship between organizations and their environments became recognized as the foremost source of complexity and interdependence. In most cases the whole has properties that cannot be known from analysis of the constituent elements in isolation. Béla H. Bánáthy, who argued—along with the founders of the systems society—that "the benefit of humankind" is the purpose of science, has made significant and far-reaching contributions to the area of systems theory. For the Primer Group at ISSS, Bánáthy defines a perspective that iterates this view:

The systems view is a world-view that is based on the discipline of SYSTEM INQUIRY. Central to systems inquiry is the concept of SYSTEM. In the most general sense, system means a configuration of parts connected and joined together by a web of relationships. The Primer group defines system as a family of relationships among the members acting as a whole. Von Bertalanffy defined system as "elements in standing relationship". —

Similar ideas are found in learning theories that developed from the same fundamental concepts, emphasizing how understanding results from knowing concepts both in part and as a whole. In fact, Bertalanffy’s organismic psychology paralleled the learning theory of Jean Piaget. Interdisciplinary perspectives are critical in breaking away from industrial age models and thinking where history is history and math is math, the arts and sciences specialized and separate, and where teaching is treated as behaviorist conditioning. The influential contemporary work of Peter Senge provides detailed discussion of the commonplace critique of educational systems grounded in conventional assumptions about learning, including the problems with fragmented knowledge and lack of holistic learning from the "machine-age thinking" that became a "model of school separated from daily life." It is in this way that systems theorists attempted to provide alternatives and an evolved ideation from orthodox theories with individuals such as Max Weber, Émile Durkheim in sociology and Frederick Winslow Taylor in scientific management, which were grounded in classical assumptions. The theorists sought holistic methods by developing systems concepts that could be integrated with different areas.

The contradiction of reductionism in conventional theory (which has as its subject a single part) is simply an example of changing assumptions. The emphasis with systems theory shifts from parts to the organization of parts, recognizing interactions of the parts are not "static" and constant but "dynamic" processes. Conventional closed systems were questioned with the development of open systems perspectives. The shift was from absolute and universal authoritative principles and knowledge to relative and general conceptual and perceptual knowledge, still in the tradition of theorists that sought to provide means in organizing human life. Meaning, the history of ideas that preceded were rethought not lost. Mechanistic thinking was particularly critiqued, especially the industrial-age mechanistic metaphor of the mind from interpretations of Newtonian mechanics by Enlightenment philosophers and later psychologists that laid the foundations of modern organizational theory and management by the late 19th century. Classical science had not been overthrown, but questions arose over core assumptions that historically influenced organized systems, within both social and technical sciences.

Read more about this topic:  Systems Theory