System (thermodynamics) - Systems in Equilibrium

Systems in Equilibrium

At thermodynamic equilibrium, a system's properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than systems not in equilibrium. Often, when analyzing a thermodynamic process, it can be assumed that each intermediate state in the process is at equilibrium. This also considerably simplifies the analysis.

In isolated systems it is consistently observed that as time goes on internal rearrangements diminish and stable conditions are approached. Pressures and temperatures tend to equalize, and matter arranges itself into one or a few relatively homogeneous phases. A system in which all processes of change have gone practically to completion is considered in a state of thermodynamic equilibrium. The thermodynamic properties of a system in equilibrium are unchanging in time. Equilibrium system states are much easier to describe in a deterministic manner than non-equilibrium states.

In thermodynamic processes, large departures from equilibrium during intermediate steps are associated with increases in entropy and increases in the production of heat rather than useful work. It can be shown that for a process to be reversible, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step. That ideal cannot be accomplished in practice because no step can be taken without perturbing the system from equilibrium, but the ideal can be approached by making changes slowly.

Read more about this topic:  System (thermodynamics)

Famous quotes containing the words systems and/or equilibrium:

    What avails it that you are a Christian, if you are not purer than the heathen, if you deny yourself no more, if you are not more religious? I know of many systems of religion esteemed heathenish whose precepts fill the reader with shame, and provoke him to new endeavors, though it be to the performance of rites merely.
    Henry David Thoreau (1817–1862)

    There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.
    Ralph Waldo Emerson (1803–1882)