Special Cases and Generalizations
- A symplectic manifold endowed with a metric that is compatible with the symplectic form is an almost Kähler manifold in the sense that the tangent bundle has an almost complex structure, but this need not be integrable. Symplectic manifolds are special cases of a Poisson manifold. The definition of a symplectic manifold requires that the symplectic form be non-degenerate everywhere, but if this condition is violated, the manifold may still be a Poisson manifold.
- A multisymplectic manifold of degree k is a manifold equipped with a closed nondegenerate k-form. See F. Cantrijn, L. A. Ibort and M. de León, J. Austral. Math. Soc. Ser. A 66 (1999), no. 3, 303-330.
- A polysymplectic manifold is a Legendre bundle provided with a polysymplectic tangent-valued -form; it is utilized in Hamiltonian field theory. See: G. Giachetta, L. Mangiarotti and G. Sardanashvily, Covariant Hamiltonian equations for field theory, Journal of Physics A32 (1999) 6629-6642; arXiv: hep-th/9904062.
Read more about this topic: Symplectic Manifold
Famous quotes containing the words special and/or cases:
“We agree fully that the mother and unborn child demand special consideration. But so does the soldier and the man maimed in industry. Industrial conditions that are suitable for a stalwart, young, unmarried woman are certainly not equally suitable to the pregnant woman or the mother of young children. Yet welfare laws apply to all women alike. Such blanket legislation is as absurd as fixing industrial conditions for men on a basis of their all being wounded soldiers would be.”
—National Womans Party, quoted in Everyone Was Brave. As, ch. 8, by William L. ONeill (1969)
“For the most part, we are not where we are, but in a false position. Through an infirmity of our natures, we suppose a case, and put ourselves into it, and hence are in two cases at the same time, and it is doubly difficult to get out.”
—Henry David Thoreau (18171862)