Symplectic Manifold - Special Cases and Generalizations

Special Cases and Generalizations

  • A symplectic manifold endowed with a metric that is compatible with the symplectic form is an almost Kähler manifold in the sense that the tangent bundle has an almost complex structure, but this need not be integrable. Symplectic manifolds are special cases of a Poisson manifold. The definition of a symplectic manifold requires that the symplectic form be non-degenerate everywhere, but if this condition is violated, the manifold may still be a Poisson manifold.
  • A multisymplectic manifold of degree k is a manifold equipped with a closed nondegenerate k-form. See F. Cantrijn, L. A. Ibort and M. de León, J. Austral. Math. Soc. Ser. A 66 (1999), no. 3, 303-330.
  • A polysymplectic manifold is a Legendre bundle provided with a polysymplectic tangent-valued -form; it is utilized in Hamiltonian field theory. See: G. Giachetta, L. Mangiarotti and G. Sardanashvily, Covariant Hamiltonian equations for field theory, Journal of Physics A32 (1999) 6629-6642; arXiv: hep-th/9904062.

Read more about this topic:  Symplectic Manifold

Famous quotes containing the words special and/or cases:

    And weren’t there special cemetery flowers,
    That, once grief sets to growing, grief may rest:
    The flowers will go on with grief awhile,
    And no one seem neglecting or neglected?
    A prudent grief will not despise such aids.
    Robert Frost (1874–1963)

    ... in all cases of monstrosity at birth anaesthetics should be applied by doctors publicly appointed for that purpose... Every successive year would see fewer of the unfit born, and finally none. But, it may be urged, this is legalized infanticide. Assuredly it is; and it is urgently needed.
    Tennessee Claflin (1846–1923)