Sylvester's Sequence - Closed Form Formula and Asymptotics

Closed Form Formula and Asymptotics

The Sylvester numbers grow doubly exponentially as a function of n. Specifically, it can be shown that

for a number E that is approximately 1.264084735305302. This formula has the effect of the following algorithm:

s0 is the nearest integer to E2; s1 is the nearest integer to E4; s2 is the nearest integer to E8; for sn, take E2, square it n more times, and take the nearest integer.

This would only be a practical algorithm if we had a better way of calculating E to the requisite number of places than calculating sn and taking its repeated square root.

The double-exponential growth of the Sylvester sequence is unsurprising if one compares it to the sequence of Fermat numbers Fn; the Fermat numbers are usually defined by a doubly exponential formula, but they can also be defined by a product formula very similar to that defining Sylvester's sequence:

Read more about this topic:  Sylvester's Sequence

Famous quotes containing the words closed, form and/or formula:

    For a long time, I went to bed early. Sometimes, my candle barely put out, my eyes closed so quickly that I did not have the time to say to myself: “I am falling asleep”.
    Marcel Proust (1871–1922)

    Modernity exists in the form of a desire to wipe out whatever came earlier, in the hope of reaching at least a point that could be called a true present, a point of origin that marks a new departure.
    Paul De Man (1919–1983)

    My formula for greatness in human beings is amor fati: that one wants to change nothing, neither forwards, nor backwards, nor in all eternity. Not merely to endure necessity, still less to hide it—all idealism is mendacity in the face of necessity—but rather to love it.
    Friedrich Nietzsche (1844–1900)