The Mathematics of Substitution Models
Stationary, neutral, independent, finite sites models (assuming a constant rate of evolution) have two parameters, an equilibrium vector of base (or character) frequencies and a rate matrix, Q, which describes the rate at which bases of one type change into bases of another type; element for i ≠ j is the rate at which base i goes to base j. The diagonals of the Q matrix are chosen so that the rows sum to zero:
The equilibrium row vector π must be annihilated by the rate matrix Q:
The transition matrix function is a function from the branch lengths (in some units of time, possibly in substitutions), to a matrix of conditional probabilities. It is denoted . The entry in the ith column and the jth row, is the probability, after time t, that there is a base j at a given position, conditional on there being a base i in that position at time 0. When the model is time reversible, this can be performed between any two sequences, even if one is not the ancestor of the other, if you know the total branch length between them.
The asymptotic properties of Pij(t) are such that Pij(0) = δij, where δij is the Kronecker delta function. That is, there is no change in base composition between a sequence and itself. At the other extreme, or, in other words, as time goes to infinity the probability of finding base j at a position given there was a base i at that position originally goes to the equilibrium probability that there is base j at that position, regardless of the original base. Furthermore, it follows that for all t.
The transition matrix can be computed from the rate matrix via matrix exponentiation:
where Qn is the matrix Q multiplied by itself enough times to give its nth power.
If Q is diagonalizable, the matrix exponential can be computed directly: let Q = U−1 Λ U be a diagonalization of Q, with
where Λ is a diagonal matrix and where are the eigenvalues of Q, each repeated according to its multiplicity. Then
where the diagonal matrix eΛt is given by
Read more about this topic: Substitution Model
Famous quotes containing the words mathematics, substitution and/or models:
“Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we dont happen to have all the data. In mathematics we have all the data ... and yet we dont understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.”
—Simone Weil (19091943)
“Virtue is the adherence in action to the nature of things, and the nature of things makes it prevalent. It consists in a perpetual substitution of being for seeming, and with sublime propriety God is described as saying, I A.”
—Ralph Waldo Emerson (18031882)
“The greatest and truest models for all orators ... is Demosthenes. One who has not studied deeply and constantly all the great speeches of the great Athenian, is not prepared to speak in public. Only as the constant companion of Demosthenes, Burke, Fox, Canning and Webster, can we hope to become orators.”
—Woodrow Wilson (18561924)