Stretched Tuning - Intervals and Inharmonicity

Intervals and Inharmonicity

In tuning, the relationship between two notes (known musically as an interval) is determined by evaluating their common harmonics. For example, we say two notes are an octave apart when the fundamental frequency of the upper note exactly matches the second harmonic of the lower note. Theoretically, this means the fundamental frequency of the upper note is exactly twice that of the lower note, and we would assume that the second harmonic of the upper note will exactly match the fourth harmonic of the lower note.

On instruments strung with metal wire, however, neither of these assumptions is valid, and inharmonicity is the reason.

Inharmonicity refers to the difference between the theoretical and actual frequencies of the harmonics or overtones of a vibrating tine or string. The theoretical frequency of the second harmonic is twice the fundamental frequency, and of the third harmonic is three times the fundamental frequency, and so on. But on metal strings, tines, and reeds, the measured frequencies of those harmonics are slightly higher, and proportionately more so in the higher than in the lower harmonics. A digital emulation of these instruments must recreate this inharmonicity if it is to sound convincing.

The theory of temperaments in musical tuning do not normally take into account inharmonicity, which varies from instrument to instrument (and from string to string), but in practice the amount of inharmonicity present in a particular instrument will effect a modification to the theoretical temperament which is being applied to it.

Read more about this topic:  Stretched Tuning

Famous quotes containing the word intervals:

    We say that every man is entitled to be valued by his best moment. We measure our friends so. We know, they have intervals of folly, whereof we take no heed, but wait the reappearings of the genius, which are sure and beautiful.
    Ralph Waldo Emerson (1803–1882)