Stone Spaces
Each Boolean algebra B has an associated topological space, denoted here S(B), called its Stone space. The points in S(B) are the ultrafilters on B, or equivalently the homomorphisms from B to the two-element Boolean algebra. The topology on S(B) is generated by a basis consisting of all sets of the form
where b is an element of B.
For any Boolean algebra B, S(B) is a compact totally disconnected Hausdorff space; such spaces are called Stone spaces (also profinite spaces). Conversely, given any topological space X, the collection of subsets of X that are clopen (both closed and open) is a Boolean algebra.
Read more about this topic: Stone's Representation Theorem For Boolean Algebras
Famous quotes containing the words stone and/or spaces:
“You see, in a world where elephants are pursued by flying men, people are just naturally going to want to get high.”
—Judith Rascoe, U.S. screenwriter, Robert Stone (b. 1939)
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)