Spin Stiffness - Spin Stiffness of The Heisenberg Model

Spin Stiffness of The Heisenberg Model

See also: Heisenberg model

Start off with the simple Heisenberg spin Hamiltonian:

Now we introduce a rotation in the system at site i by an angle θi around the z-axis:

Plugging these back into the Heisenberg Hamiltonian:

now let θij = θi - θj and expand around θij = 0 via a MacLaurin expansion only keeping terms up to second order in θij

where the first term is independent of θ and the second term is a perturbation for small θ.

is the z-component of the spin current operator
is the "spin kinetic energy"

Consider now the case of identical twists, θx only that exist along nearest neighbor bonds along the x-axis Then since the spin stiffness is related to the difference in the ground state energy by

then for small θx and with the help of second order perturbation theory we get:

Read more about this topic:  Spin Stiffness

Famous quotes containing the words spin, stiffness and/or model:

    Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.
    David Lehman (b. 1948)

    Everything ponderous, viscous, and solemnly clumsy, all long- winded and boring types of style are developed in profuse variety among Germans—forgive me the fact that even Goethe’s prose, in its mixture of stiffness and elegance, is no exception, being a reflection of the “good old time” to which it belongs, and a reflection of German taste at a time when there still was a “German taste”Ma rococo taste in moribus et artibus.
    Friedrich Nietzsche (1844–1900)

    If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.
    James Mcneill Whistler (1834–1903)