Effect of Frequency and Gas Composition
The medium in which a sound wave is travelling does not always respond adiabatically, and as a result the speed of sound can vary with frequency.
The limitations of the concept of speed of sound due to extreme attenuation are also of concern. The attenuation which exists at sea level for high frequencies applies to successively lower frequencies as atmospheric pressure decreases, or as the mean free path increases. For this reason, the concept of speed of sound (except for frequencies approaching zero) progressively loses its range of applicability at high altitudes.: The standard equations for the speed of sound apply with reasonable accuracy only to situations in which the wavelength of the soundwave is considerably longer than the mean free path of molecules in a gas.
The molecular composition of the gas contributes both as the mass (M) of the molecules, and their heat capacities, and so both have an influence on speed of sound. In general, at the same molecular mass, monatomic gases have slightly higher sound speeds (over 9% higher) because they have a higher (5/3 = 1.66...) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the sound speed of a monatomic gas goes up by a factor of
= 1.091...
This gives the 9% difference, and would be a typical ratio for sound speeds at room temperature in helium vs. deuterium, each with a molecular weight of 4. Sound travels faster in helium than deuterium because adiabatic compression heats helium more, since the helium molecules can store heat energy from compression only in translation, but not rotation. Thus helium molecules (monatomic molecules) travel faster in a sound wave and transmit sound faster. (Sound generally travels at about 70% of the mean molecular speed in gases).
Note that in this example we have assumed that temperature is low enough that heat capacities are not influenced by molecular vibration (see heat capacity). However, vibrational modes simply cause gammas which decrease toward 1, since vibration modes in a polyatomic gas gives the gas additional ways to store heat which do not affect temperature, and thus do not affect molecular velocity and sound velocity. Thus, the effect of higher temperatures and vibrational heat capacity acts to increase the difference between sound speed in monatomic vs. polyatomic molecules, with the speed remaining greater in monatomics.
Read more about this topic: Speed Of Sound
Famous quotes containing the words effect of, effect, frequency, gas and/or composition:
“I shall theffect of this good lesson keep
As watchman to my heart.”
—William Shakespeare (15641616)
“The law before us, my lords, seems to be the effect of that practice of which it is intended likewise to be the cause, and to be dictated by the liquor of which it so effectually promotes the use; for surely it never before was conceived by any man entrusted with the administration of public affairs, to raise taxes by the destruction of the people.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as Is your wife having natural childbirth or is she planning to be knocked out? But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.”
—Jean Marzollo (20th century)
“Man moves in all modes, by legs of horses, by wings of winds, by steam, by gas of balloon, by electricity, and stands on tiptoe threatening to hunt the eagle in his own element.”
—Ralph Waldo Emerson (18031882)
“The naive notion that a mother naturally acquires the complex skills of childrearing simply because she has given birth now seems as absurd to me as enrolling in a nine-month class in composition and imagining that at the end of the course you are now prepared to begin writing War and Peace.”
—Mary Kay Blakely (20th century)