Spectrum of A Ring - Sheaves and Schemes

Sheaves and Schemes

Given the space X=Spec(R) with the Zariski topology, the structure sheaf OX is defined on the Df by setting Γ(Df, OX) = Rf, the localization of R at the multiplicative system {1,f,f2,f3,...}. It can be shown that this satisfies the necessary axioms to be a B-Sheaf. Next, if U is the union of {Dfi}iI, we let Γ(U,OX) = limiI Rfi, and this produces a sheaf; see the Gluing axiom article for more detail.

If R is an integral domain, with field of fractions K, then we can describe the ring Γ(U,OX) more concretely as follows. We say that an element f in K is regular at a point P in X if it can be represented as a fraction f = a/b with b not in P. Note that this agrees with the notion of a regular function in algebraic geometry. Using this definition, we can describe Γ(U,OX) as precisely the set of elements of K which are regular at every point P in U.

If P is a point in Spec(R), that is, a prime ideal, then the stalk at P equals the localization of R at P, and this is a local ring. Consequently, Spec(R) is a locally ringed space.

Every locally ringed space isomorphic to one of this form is called an affine scheme. General schemes are obtained by "gluing together" several affine schemes.

Read more about this topic:  Spectrum Of A Ring

Famous quotes containing the words sheaves and/or schemes:

    Being young you have not known
    The fool’s triumph, nor yet
    Love lost as soon as won,
    Nor the best labourer dead
    And all the sheaves to bind.
    William Butler Yeats (1865–1939)

    Science is a dynamic undertaking directed to lowering the degree of the empiricism involved in solving problems; or, if you prefer, science is a process of fabricating a web of interconnected concepts and conceptual schemes arising from experiments and observations and fruitful of further experiments and observations.
    James Conant (1893–1978)