Soliton - Solitons in Fiber Optics

Solitons in Fiber Optics

See also: Soliton (optics)

Much experimentation has been done using solitons in fiber optics applications. Solitons in a fiber optic system are described by the Manakov equations. Solitons' inherent stability make long-distance transmission possible without the use of repeaters, and could potentially double transmission capacity as well.

Year Discovery
1973 Akira Hasegawa of AT&T Bell Labs was the first to suggest that solitons could exist in optical fibers, due to a balance between self-phase modulation and anomalous dispersion. Also in 1973 Robin Bullough made the first mathematical report of the existence of optical solitons. He also proposed the idea of a soliton-based transmission system to increase performance of optical telecommunications.
1987 Emplit et al. (1987) – from the Universities of Brussels and Limoges – made the first experimental observation of the propagation of a dark soliton, in an optical fiber.
1988 Linn Mollenauer and his team transmitted soliton pulses over 4,000 kilometers using a phenomenon called the Raman effect, named after Sir C. V. Raman who first described it in the 1920s, to provide optical gain in the fiber.
1991 A Bell Labs research team transmitted solitons error-free at 2.5 gigabits per second over more than 14,000 kilometers, using erbium optical fiber amplifiers (spliced-in segments of optical fiber containing the rare earth element erbium). Pump lasers, coupled to the optical amplifiers, activate the erbium, which energizes the light pulses.
1998 Thierry Georges and his team at France Telecom R&D Center, combining optical solitons of different wavelengths (wavelength-division multiplexing), demonstrated a composite data transmission of 1 terabit per second (1,000,000,000,000 units of information per second), not to be confused with Terabit-Ethernet.

The above impressive experiments have not translated to actual commercial soliton system deployments however, in either terrestrial or submarine systems, chiefly due to the Gordon–Haus (GH) jitter. The GH jitter requires sophisticated, expensive compensatory solutions that ultimately makes DWDM soliton transmission in the field unattractive, compared to the conventional non-return-to-zero/return-to-zero paradigm. Further, the likely future adoption of the more spectrally efficient phase-shift-keyed/QAM formats makes soliton transmission even less viable, due to the Gordon-Mollenauer effect. Consequently, the long-haul fiberoptic transmission soliton has remained a laboratory curiosity.

2000 Cundiff predicted the existence of a vector soliton in a birefringence fiber cavity passively mode locking through SESAM. The polarization state of such a vector soliton could either be rotating or locked depending on the cavity parameters.
2008 D. Y. Tang et al. observed a novel form of higher-order vector soliton from the perspect of experiments and numerical simulations. Different types of vector solitons and the polarization state of vector solitons have been investigated by his group.

Read more about this topic:  Soliton

Famous quotes containing the word fiber:

    I taught school in the early days of my manhood and I think I know something about mothers. There is a thread of aspiration that runs strong in them. It is the fiber that has formed the most unselfish creatures who inhabit this earth. They want three things only; for their children to be fed, to be healthy, and to make the most of themselves.
    Lyndon Baines Johnson (1908–1973)