Solid-state Drive - Applications

Applications

Until 2009, SSDs were mainly used in those aspects of mission critical applications where the speed of the storage system needed to be as fast as possible. Since flash memory has become a common component of SSDs, the falling prices and increased densities have made it more financially attractive for many other applications. Organizations that can benefit from faster access of system data include equity trading companies, telecommunication corporations, streaming media and video editing firms. The list of applications which could benefit from faster storage is vast. Any company can assess the ROI from adding SSDs to their own applications to best understand if that will be cost effective for them.

Flash-based solid-state drives can be used to create network appliances from general-purpose personal computer hardware. A write protected flash drive containing the operating system and application software can substitute for larger, less reliable disk drives or CD-ROMs. Appliances built this way can provide an inexpensive alternative to expensive router and firewall hardware.

SSDs based on an SD card with a live SD operating system are easily write-locked. Combined with a cloud computing environment or other writable medium, to maintain persistence, an OS booted from a write-locked SD card is robust, rugged, reliable, and impervious to permanent corruption. If the running OS degrades, simply turning the machine off and then on returns it back to its initial uncorrupted state and thus is particularly solid. The SD card installed OS does not require removal of corrupted components since it was write-locked though any written media may need to be restored.

In 2011, Intel introduced a caching mechanism for their Z68 chipset (and mobile derivatives) called Smart Response Technology, which allows a SATA SSD to be used as a cache (configurable as write-through or write-back) for a conventional, magnetic hard disk drive. A similar technology is available on HighPoint's RocketHybrid PCIe card. Hybrid drives (H-HDSs) are based on the same principle, but integrate some amount of flash memory on board of a conventional drive instead of using a separate SSD. The flash layer in these drives can be accessed independently from the magnetic storage by the host using ATA-8 commands, allowing the operating system to manage it. For example Microsoft's ReadyDrive technology explicitly stores portions of the hibernation file in the cache of these drives when the system hibernates, making the subsequent resume faster.

Read more about this topic:  Solid-state Drive