Sociable Number

Sociable numbers are generalizations of the concepts of amicable numbers and perfect numbers. A set of sociable numbers is a kind of aliquot sequence, or a sequence of numbers each of whose numbers is the sum of the factors of the preceding number, excluding the preceding number itself. For the sequence to be sociable, the sequence must be cyclic, eventually returning to its starting point.

The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle.

If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of order 2. There are no known sociable numbers of order 3.

It is an open question whether all numbers end up at either a sociable number or at a prime (and hence 1). Or equivalently, whether there exists a number whose aliquot sequence never terminates.

An example with period 4:

The sum of the proper divisors of 1264460 (22 * 5 * 17 * 3719) is:
1 + 2 + 4 + 5 + 10 + 17 + 20 + 34 + 68 + 85 + 170 + 340 + 3719 + 7438 + 14876 + 18595 + 37190 + 63223 + 74380 + 126446 + 252892 + 316115 + 632230 = 1547860
The sum of the proper divisors of 1547860 (22 * 5 * 193 * 401) is:
1 + 2 + 4 + 5 + 10 + 20 + 193 + 386 + 401 + 772 + 802 + 965 + 1604 + 1930 + 2005 + 3860 + 4010 + 8020 + 77393 + 154786 + 309572 + 386965 + 773930 = 1727636
The sum of the proper divisors of 1727636 (22 * 521 * 829) is:
1 + 2 + 4 + 521 + 829 + 1042 + 1658 + 2084 + 3316 + 431909 + 863818 = 1305184
The sum of the proper divisors of 1305184 (25 * 40787) is:
1 + 2 + 4 + 8 + 16 + 32 + 40787 + 81574 + 163148 + 326296 + 652592 = 1264460.


The following categorizes all known sociable numbers as of October 2009 by the length of the corresponding aliquot sequence:

Sequence

length

Number of

sequences

1

(perfect)

47
2

(amicable)

11,994,387
4 165
5 1
6 5
8 2
9 1
28 1

Famous quotes containing the words sociable and/or number:

    I love a gay and sociable wisdom, and shun harshness and austerity in behaviour, holding every surly countenance suspect.
    Michel de Montaigne (1533–1592)

    After mature deliberation of counsel, the good Queen to establish a rule and imitable example unto all posterity, for the moderation and required modesty in a lawful marriage, ordained the number of six times a day as a lawful, necessary and competent limit.
    Michel de Montaigne (1533–1592)