Standard Form
The transformation of a linear program to one in standard form may be accomplished as follows. First, for each variable with a lower bound other than 0, a new variable is introduced representing the difference between the variable and bound. The original variable can then be eliminated by substitution. For example, given the constraint
a new variable, y1, is introduced with
The second equation may be used to eliminate x1 from the linear program. In this way, all lower bound constraints may be changed to non-negativity restrictions.
Second, for each remaining inequality constraint, a new variable, called a slack variable, is introduced to change the constraint to an equality constraint. This variable represents the difference between the two sides of the inequality and is assumed to be nonnegative. For example the inequalities
are replaced with
It is much easier to perform algebraic manipulation on inequalities in this form. In inequalities where ≥ appears such as the second one, some authors refer to the variable introduced as a surplus variable.
Third, each unrestricted variable is eliminated from the linear program. This can be done in two ways, one is by solving for the variable in one of the equations in which it appears and then eliminating the variable by substitution. The other is to replace the variable with the difference of two restricted variables. For example if z1 is unrestricted then write
The equation may be used to eliminate z1 from the linear program.
When this process is complete the feasible region will be in the form
It is also useful to assume that the rank of A is the number of rows. This results in no loss of generality since otherwise either the system Ax >= b has redundant equations which can be dropped, or the system is inconsistent and the linear program has no solution.
Read more about this topic: Simplex Algorithm
Famous quotes containing the words standard and/or form:
“Where shall we look for standard English but to the words of a standard man?”
—Henry David Thoreau (18171862)
“The sense of an entailed disadvantagethe deformed foot doubtfully hidden by the shoe, makes a restlessly active spiritual yeast, and easily turns a self-centred, unloving nature into an Ishmaelite. But in the rarer sort, who presently see their own frustrated claim as one among a myriad, the inexorable sorrow takes the form of fellowship and makes the imagination tender.”
—George Eliot [Mary Ann (or Marian)