Signed Distance Function - Definition

Definition

If (X, d) is a metric space, the signed distance function f is defined by

f(x)=
\begin{cases} d(x, \Omega^c) & \mbox{ if } x\in\Omega \\ -d(x, \Omega)& \mbox{ if } x\in\Omega^c
\end{cases}

where

and 'inf' denotes the infimum.


Algorithms for calculating the signed distance function include the efficient fast marching method and the more general but slower level set method.

Signed distance functions are applied for example in computer vision.

Read more about this topic:  Signed Distance Function

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)