Shock Tube - Applications

Applications

In addition to measurements of rates of chemical kinetics shock tubes have been used to measure dissociation energies and molecular relaxation rates they have been used in aerodynamic tests. The fluid flow in the driven gas can be used much as a wind tunnel, allowing higher temperatures and pressures therein replicating conditions in the turbine sections of jet engines. However, test times are limited to a few milliseconds, either by the arrival of the contact surface or the reflected shock wave.

They have been further developed into shock tunnels, with an added nozzle and dump tank. The resultant high temperature hypersonic flow can be used to simulate atmospheric re-entry of spacecraft or hypersonic craft, again with limited testing times.

Shock tubes have been developed in a wide range of sizes. The size and method of producing the shock wave determine the peak and duration of the pressure wave it produces. Thus, shock tubes can be used as a tool used to both create and direct blast waves at a sensor or an object in order to imitate actual explosions and the damage that they cause on a smaller scale. Results from shock tube experiments can be used to develop and validate numerical model of the response of a material or object to a blast wave. Shock tubes can be used to experimentally determine which materials and designs would be best suited to the job of attenuating blast waves. The results can then be incorporated into designs to protect structures and people that might be exposed to a blast wave. Shock tubes are also used in biomedical research to find out how biological tissues are affected by blast waves.

Read more about this topic:  Shock Tube