Selective Catalytic Reduction - Limitations

Limitations

SCR systems are sensitive to contamination and plugging resulting from normal operation or abnormal events. Many SCRs are given a finite life due to known amounts of contaminants in the untreated gas. The large majority of catalyst on the market is of porous construction. A clay planting pot is a good example of what SCR catalyst feels like. This porosity is what gives the catalyst the high surface area essential for reduction of NOx. However, the pores are easily plugged by a variety of compounds present in combustion/flue gas. Some examples of plugging contaminates are: fine particulate, ammonia sulfur compounds, ammonium bisulfate (ABS) and silicon compounds. Many of these contaminants can be removed while the unit is on line, for example by sootblowers. The unit can also be cleaned during a turnaround or by raising the exhaust temperature. Of more concern to SCR performance is poisons, which will destroy the chemistry of the catalyst and render the SCR ineffective at NOx reduction or cause unwanted oxidation of ammonia (forming more NOx). Some of these poisons include: halogens, alkaline metals, arsenic, phosphorus, antimony, chrome, copper.

Most SCRs require tuning to properly perform. Part of tuning involves ensuring a proper distribution of ammonia in the gas stream and uniform gas velocity through the catalyst. Without tuning, SCRs can exhibit inefficient NOx reduction along with excessive ammonia slip due to not utilizing the catalyst surface area effectively. Another facet of tuning involves determining the proper ammonia flow for all process conditions. Ammonia flow is in general controlled based on NOx measurements taken from the gas stream or preexisting performance curves from an engine manufacturer (in the case of gas turbines and reciprocating engines). Typically, all future operating conditions must be known beforehand to properly design and tune an SCR system.

Ammonia slip is an industry term for ammonia passing through the SCR un-reacted. This occurs when ammonia is: over-injected into gas stream; temperatures are too low for ammonia to react; or catalyst has degraded (see above).

Temperature is one of the largest limitations of SCR. Gas turbines, cars, and diesel engines all have a period during a start-up where exhaust temperatures are too cool for NOx reduction to occur.

Read more about this topic:  Selective Catalytic Reduction

Famous quotes containing the word limitations:

    Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a child’s limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.
    Lawrence Balter (20th century)

    The limitations of pleasure cannot be overcome by more pleasure.
    Mason Cooley (b. 1927)

    ... art transcends its limitations only by staying within them.
    Flannery O’Connor (1925–1964)