Rolling Resistance - Factors That Contribute in Tires

Factors That Contribute in Tires

Several factors affect the magnitude of rolling resistance a tire generates:

  • As mentioned in the introduction: wheel radius, forward speed, surface adhesion, and relative micro-sliding.
  • Material - different fillers and polymers in tire composition can improve traction while reducing hysteresis. The replacement of some carbon black with higher-priced silica–silane is one common way of reducing rolling resistance. The use of exotic materials including nano-clay has been shown to reduce rolling resistance in high performance rubber tires. Solvents may also be used to swell solid tires, decreasing the rolling resistance.
  • Dimensions - rolling resistance in tires is related to the flex of sidewalls and the contact area of the tire For example, at the same pressure, wider bicycle tires flex less in sidewalls as they roll and thus have lower rolling resistance (although higher air resistance).
  • Extent of inflation - Lower pressure in tires results in more flexing of sidewalls and higher rolling resistance. This energy conversion in the sidewalls increases resistance and can also lead to overheating and may have played a part in the infamous Ford Explorer rollover accidents.
  • Over inflating tires (such a bicycle tires) may not lower the overall rolling resistance as the tire may skip and hop over the road surface. Traction is sacrificed, and overall rolling friction may not be reduced as the wheel rotational speed changes and slippage increases.
  • Sidewall deflection is not a direct measurement of rolling friction. A high quality tire with a high quality (and supple) casing will allow for more flex per energy loss than a cheap tire with a stiff sidewall. Again, on a bicycle, a quality tire with a supple casing will still roll easier than a cheap tire with a stiff casing. Similarly, as noted by Goodyear truck tires, a tire with a "fuel saving" casing will benefit the fuel economy through many tread lives (i.e. retreading), while a tire with a "fuel saving" tread design will only benefit until the tread wears down.
  • In tires, tread thickness and shape has much to do with rolling resistance. The thicker and more contoured the tread, the higher the rolling resistance Thus, the "fastest" bicycle tires have very little tread and heavy duty trucks get the best fuel economy as the tire tread wears out.
  • Diameter effects seem to be negligible, provided the pavement is hard and the range of diameters is limited. See #Depends on diameter
  • Virtually all world speed records have been set on relatively narrow wheels, probably because of their aerodynamic advantage at high speed, which is much less important at normal speeds.
  • Temperature: with both solid and pneumatic tires, rolling resistance has been found to decrease as temperature increases (within a range of temperatures: i.e. there is an upper limit to this effect) For a rise in temperature from 30 deg. C to 70 deg. C the rolling resistance decreased by 20-25% It's claimed that racers heat their tire before racing.

Read more about this topic:  Rolling Resistance

Famous quotes containing the words factors, contribute and/or tires:

    I always knew I wanted to be somebody. I think that’s where it begins. People decide, “I want to be somebody. I want to make a contribution. I want to leave my mark here.” Then different factors contribute to how you will do that.
    Faith Ringgold (b. 1934)

    The Taylor and the Painter often contribute to the Success of a Tragedy more than the Poet. Scenes affect ordinary Minds as much as Speeches; and our Actors are very sensible, that a well-dressed Play has sometimes brought them as full Audiences, as a well-written one.... But however the Show and Outside of the Tragedy may work upon the Vulgar, the more understanding Part of the Audience immediately see through it, and despise it.
    Joseph Addison (1672–1719)

    One never tires of what is well written, style is life! It is the very blood of thought!
    Gustave Flaubert (1821–1880)